UNIVERSIDAD ALAS PERUANAS

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA MECÁNICA

INFLUENCIA DE LA AMPLIACIÓN DE FAJAS TRANSPORTADORAS EN EL TRANSPORTE DE AGREGADO EN LA EMPRESA DE CEMENTO YURA S.A. AREQUIPA 2015

PRESENTADO POR EL BACHILLER
GIANCARLO VILCA GÓMEZ
PARA OPTAR EL TÍTULO
PROFESIONAL DE INGENIERO
MECÁNICO

AREQUIPA – PERÚ 2018

Este trabajo de investigación está dedicado a mis adorados hijos quienes son el motor y a mi querida esposa que es la que me impulsa a seguir adelante

Agradezco a Dios, por haberme acompañado y guiado a lo largo de mi carrera, por ser mi fortaleza en momentos de debilidad.

A la Universidad Alas Peruanas- Filial Arequipa, por los conocimientos que me ha brindado hasta la culminación de mi carrera y por la oportunidad de realizar mi graduación.

A todos mis amigos, compañeros y maestros de la Universidad que formaron parte de mí, quienes siempre quedarán en mis recuerdos.

RESUMEN

El presente trabajo de investigación se realizó en la empresa de cemento Yura de la ciudad de Arequipa, con el objetivo de determinar la relación entre la ampliación de fajas transportadoras y el transporte de agregados en la empresa de cemento Yura S.A., Arequipa 2015.

En cuanto a la metodología de investigación, es de campo de tipo no experimental y de nivel explicativo. Se aplicaron las técnicas de análisis documental y observación de campo para el análisis de los resultados.

La muestra de 85 trabajadores de la empresa Yura S.A en altos porcentajes, opinan que sí es necesario ampliar las fajas transportadoras de agregados.

En el trabajo de investigación en lo referente a la aplicación de la encuesta de campo de la variable dependiente o respuesta, se probó la hipótesis nula con un nivel de significación del 5% y con g.l. del 1 y 3 en lo que dio como resultados de sus pruebas de Chi-cuadrado aceptando las hipótesis nulas y alternas.

PALABRAS CLAVES: Fajas transportadoras, agregados, eficiencia, capacidad e infraestructura.

ABSTRACT

The present research work was carried out in the Yura cement company of the city of Arequipa; with the objective of determining the relationship between the expansion of conveyor belts and the transport of aggregates in cement company Yura S.A., Arequipa 2015.

Regarding the research methodology, it is a field of non-experimental type of explanatory level, in which documentary analysis techniques were used, field observation for the analysis of the results.

As for the results in synthesis you can see the results of the survey applied to the workers of the company Yura S.A. In which the sample was made to 85 workers of which in high percentages they believe that it is necessary to expand aggregate conveyor belts.

The research work in relation to the application of the field survey of the dependent variable or response, the null hypotheses were tested with a level of significance of 5% and with g.l. from 1 and 3 in what he gave as results of his Chi-square tests accepting the null hypotheses and accepting the alternate hypotheses.

KEYWORDS: Conveyors, aggregates, efficiency, capacity and infrastructure.

ÍNDICE

DEDICATORIA
AGRADECIMIENTO
RESUMEN
ABSTRACT
INTRODUCCIÓN

CAPÍTULO I

PLANTEAMIENTO DEL PROBLEMA

1.1. Descripción de la realida	ad problemática1	l
1.2. Delimitación de la invest	igación 2	2
1.2.1. Delimitación espacial	2	2
1.2.2. Delimitación temporal	2	2
1.2.3. Delimitación social	2	2
1.3. Problemas de investigació	n 2	2
1.3.1. Problema general	2	2
1.3.2. Problemas específicos	2	2
1.4. Objetivos de la investiga	ıción3	3
1.4.1. Objetivo general	3	3
1.4.2. Objetivos específicos	3	3
1.5. Hipótesis de la investigació	ón 3	3
1.5.1. Hipótesis general	3	3
1.5.2. Hipótesis específicas	3	3
1.5.3. Identificación y clasificado	ción de variables e indicadores3	3
1.6. Diseño de la investigación	4	1
1.6.1. Tipo de investigación	4	1
1.6.2. Nivel de investigación	4	1
1.6.3. Método y diseño de inve	stigación 5	5
1.6.4. Diseño de la investigacio	ón 5	5
1.7. Población y muestra de la	investigación5	5
1.7.1. Población	5	5
1.7.2. Muestra	5	5
1.8. Técnicas e instrumentos y	fuentes de recolección de datos 5	5
1.8.1. Técnicas	5	5
1.8.2. Instrumento		3

1.8.3. Fuentes	6
1.9. Justificación e importancia de la investigación	6
1.9.1. Justificación teórica	6
1.9.2. Justificación práctica	6
1.9.3. Justificación social	6
1.9.4. Justificación ambiental	
1.9.5. Justificación económica	7
CAPÍTULO II	
MARCO TEÓRICO	
2.1. Antecedentes de la investigación	
2.1.1. Estudios previos	2
2.1.2. Tesis nacionales	
2.2. Bases teóricas	
2.2.1. Rodillos	
2.3. Marco conceptual	16
2.3.1. Plantas móviles de agregado	
2.3.2. Faja y zaranda	16
2.4. Memoria de cálculos: "Estructura Metálica Faja Transportadora De Bultos-Proyecto Misti"	17
2.4.1. Longitud de la faja transportadora	17
2.4.2. Metrado de cargas para estructura de la faja, estructura de faja, pole de cola y cabeza	
2.4.3. COMBINACIONES DE CARGA	22
2.4.4. De plancha base para columna w8x21	31
2.5. Definición de términos básicos	45
CAPÍTULO III	
PRESENTACIÓN, ANÁLISIS E INTERPRETACIÓN DE RESULTADOS	
3.1. Tablas y gráficas estadísticas	47
3.2. CONTRASTACIÓN DE HIPÓTESIS	58
3.2.1. Contrastación de la Ho1	58
3.2.2. Contrastación de la hipótesis Ho2	60
CONCLUSIONES	
RECOMENDACIONES	
FUENTES DE INFORMACIÓN	
ANEXOS	

ÍNDICE DE TABLAS

TABLA 1 CONSUMO ESTIMADO=DESPACHO NACIONAL	7
TABLA 2. TENSIONES EN FAJA NUEVA	18
TABLA 3. CARGA DE VIENTO (W)	19
TABLA 4. SAE 1045	27
TABLA 5. TENSIÓN NOMINAL DE CONEXIONES Y PARTES ROSCADAS	27
TABLA 6. REACCIONES CONJUNTAS	34
TABLA 7. COSTOS	
TABLA 8. DISTRIBUCIÓN DEL DESARROLLO DE SU TRABAJO ESTÁ INVOLUCRAD	0
CON LA BANDA TRANSPORTADORA	47
TABLA 9. CONOCE LA IMPORTANCIA DE LOS EQUIPOS DE BANDAS	
TRANSPORTADORAS	48
TABLA 10. CONOCIMIENTO DE LAS VECES QUE FALLA LAS BANDAS	
TRANSPORTADORAS	
TABLA 11. CONSIDERA ŅECESARIO AMPLIAR LAS FAJAS TRANSPORTADORAS	
TABLA 12. LA AMPLIACIÓN DE FAJAS MEJORARÁ LA PRODUCCIÓN	
TABLA 13. MEJORA DE LA EFICIENCIA EN SU TRABAJO CON LA AMPLIACIÓN DE	
FAJAS TRANSPORTADORAS	53
TABLA 14. CONOCE LOS PROCEDIMIENTOS DE REVISIÓN DE LAS BANDAS	
TRANSPORTADORAS	
TABLA 15. ANTE UNA FALLA CUENTA CON LAS HERRAMIENTAS PARA EL SERVIC	
EN LAS FAJAS TRANSPORTADORAS	56
TABLA 16.LA EMPRESA TIENE LA CAPACIDAD E INFRAESTRUCTURA PARA LA	
AMPLIACIÓN DE FAJAS TRANSPORTADORAS	
TABLA 17. FRECUENCIA OBSERVADA	
TABLA 18. FRECUENCIA ESPERADA	
TABLA 19.CÁLCULO DE X ² (CHI-CUADRADO)	
TABLA 20. FRECUENCIA OBSERVADA	
TABLA 21.FRECUENCIA ESPERADA	
TABLA 22. CÁLCULO DE LA X ²	62

ÍNDICE DE FIGURAS

FIGURA	1. FOTO DE UN YACIMIENTO DE COBRE	9
FIGURA	2. FOTO DE UNA VOLADURA	.10
FIGURA	3.FOTO DE LA PLANTA INDUSTRIAL DE 350 TPH	.10
FIGURA	4. ESQUEMA DE CICLO DE DESARROLLO DEL COBRE DESDE EL	
YAC	CIMIENTO	.11
FIGURA	5. TRES DIFERENTES TIPOS DE RODILLOS EN MÓDULOS DE TRES	.13
FIGURA	6. MÓDULOS DE RODILLOS DE IMPACTO	.14
FIGURA	7. RODILLOS DE CARGA MONTADOS EN BASTIDOR	.14
FIGURA	8. RODILLOS DE RETORNO EN PARTE SUPERIOR DE COLA DE BANDA	. 15
FIGURA	9. RODILLOS DE RETORNO	.16
FIGURA	10. TENSIONES MÁXIMAS EN OPERACIÓN (MOVIMIENTO RÍTMICO)	.18
FIGURA	11. TENSIONES MÁXIMAS EN OPERACIÓN (MOVIMIENTO RÍTMICO)	.19
FIGURA	12. SECCIÓN TÍPICA	.23
FIGURA	13. DISEÑO	.25

ÍNDICE DE GRÁFICOS

GRÁFICO 1. DISTRIBUCIÓN DEL DESARROLLO DE SU TRABAJO ESTÁ	
INVOLUCRADO CON LA BANDA TRANSPORTADORA	.48
GRÁFICO 2. CONOCE LA IMPORTANCIA DE LOS EQUIPOS DE BANDAS	
TRANSPORTADORRAS	.49
GRÁFICO 3. DISTRIBUCIÓN DE SI SABE ACTUALMENTE QUE EXISTE UN	
PROGRAMA DE AMPLIACIÓN DE BANDAS TRANSPORTADORAS	.50
GRÁFICO 4.DISTRIBUCIÓN SOBRE EL CONOCIMIENTO DE LAS VECES QUE FALLA	
LAS BANDAS TRANSPORTADORAS	.51
GRÁFICO 5. DISTRIBUCIÓN DE SI CONSIDERA NECESARIO AMPLIAR LAS BANDAS	;
TRANSPORTADORAS	
GRÁFICO 6.DISTRIBUCIÓN DE SI MEJORARÉ LA PRODUCCIÓN CON LA AMPLIACIÓ	NC
DE FAJAS TRANSPORTADORAS	
GRÁFICO 7.DISTRIBUCIÓN DE MEJORA DE LA EFICIENCIA EN SU TRABAJO CON L	
AMPLIACIÓN DE FAJAS TRANSPORTADORAS	
GRÁFICO 8. DISTRIBUCIÓN DE CONOCER LOS PROCEDIMIENTOS DE REVISIÓN D	
LAS BANDAS TRANSPORTADORAS	.55
GRÁFICO 9. DISTRIBUCIÓN DE ANTE UNA FALLA SI CUENTA CON LAS	
HERRAMIENTAS PARA EL SERVICIO EN LAS FAJAS TRANSPORTADORAS	.57
GRÁFICO 10.DISTRIBUCIÓN DE LA CAPACIDAD E INFRAESTRUCTURA PARA LA	
AMPLIACIÓN DE LAS FAJAS TRANSPORTADORAS	.58

INTRODUCCIÓN

La tesis que presento lleva como título "Ampliación de fajas transportadoras de agregado en la empresa Yura S.A., Arequipa. 2015."

Para lo cual se ha propuesto como objetivo general:

Determinar la relación entre la ampliación de fajas transportadoras y el transporte de agregados en la empresa de cemento Yura S.A., Arequipa 2015.

Y los objetivos específicos

- Establecer la ampliación de las fajas transportadoras en la empresa de cemento Yura S.A.
- Precisar y modificar el transporte de agregado en la empresa de cemento Yura S.A.-

La investigación es de CAMPO de tipo no experimental, y aplicada, nivel explicativo, cuantitativa, transversal y está orientada a la aplicación con el propósito de dar respuesta al problema y mejorar la capacidad e infraestructura de las fajas transportadoras y transporte de agregado.

En el capítulo I, planteamiento metodológico, se delimita el problema de investigación; a su vez, se formulan los objetivos e hipótesis y se justifica la investigación.

En cuanto al capítulo II, marco teórico, se presentan los antecedentes con los cuales se hace un estudio previo.

El capítulo III anuncia la presentación, análisis de los resultados, contratación de las hipótesis, conclusiones y recomendaciones.

En los anexos, alcanzamos la matriz de consistencia e instrumentos analizados.

CAPÍTULO I

PLANTEAMIENTO DEL PROBLEMA

1.1. Descripción de la realidad problemática

La empresa de cemento Yura S.A. mantiene muchas dudas y fuertes discrepancias con el modelo de faja transportadora actual; en realidad, es la verdadera preocupación de toda la fábrica de cemento.

Las fajas transportadoras, recientemente desarrollados, son unidades versátiles y compactas de dos fases de circuito cerrado, que pueden transportar el agregado de materia prima para la elaboración de cemento Yura.

Esas plantas fueron proyectadas para proporcionar alta movilidad, expresada a través de instalaciones y desplazamientos rápidos; además del desempeño superior, combinado a la extrema facilidad de mantenimiento, garantizando un rápido retorno del capital invertido. Todos los objetivos fueron plenamente alcanzados.

La excelencia de la planta es el resultado de una suma de las calidades únicas de los equipos utilizados y de las soluciones técnicas empleadas, asociado a la moderna zaranda horizontal de alta capacidad y movimiento elíptico, más el sistema patentado de transporte a través de fajas

Transportadoras, la cual permite acceso libre a los equipos, constituyendo una imbatible combinación pionera.

1.2. Delimitación de la investigación

1.2.1. Delimitación espacial

La tesis se realizó en la empresa de cemento Yura S. A. de la ciudad de Arequipa, ubicado en el distrito de Yura. A unos 26 Km de la ciudad de Arequipa dentro de la región y provincia de Arequipa-Perú.

1.2.2. Delimitación temporal

Este plan de tesis se desarrolló durante 4 meses (octubre, noviembre, diciembre y enero) del año 2014 - 2015 para comprobar la versatilidad y confiabilidad de las fajas transportadoras y el transporte de agregado, asegurando el incremento de la seguridad en la ejecución del trabajo.

1.2.3. Delimitación social

En el problema de estudio, están involucrados todos los trabajadores de la empresa y personal contratado por la empresa para la realización de la ampliación de fajas transportadoras y el transporte de agregado.

1.3. Problemas de investigación

1.3.1. Problema general

Cómo se relacionan la ampliación de fajas transportadoras y el transporte de agregado en la empresa de cemento Yura S.A., Arequipa 2015.

1.3.2. Problemas específicos

- •¿Qué es la ampliación de fajas transportadoras en la empresa de cemento Yura S.A.?
- •¿Cuál es la precisión de la ampliación del transporte de agregado en la empresa de cemento Yura S.A.?

1.4. Objetivos de la investigación

1.4.1. Objetivo general

Determinar la relación entre la ampliación de fajas transportadoras y el transporte de agregados en la empresa de cemento Yura S.A., Arequipa 2015.

1.4.2. Objetivos específicos

- **1.4.2.1.** Establecer la ampliación de las fajas transportadoras en la empresa de cemento Yura S.A.
- **1.4.2.2.** Precisar y modificar el transporte de agregado en la empresa de cemento Yura S.A.

1.5. Hipótesis de la investigación

1.5.1. Hipótesis general

El transporte de agregados se debe al diseño de la planta móvil.

Es probable que la ampliación de fajas transportadoras influya significativamente en el transporte de agregados en la empresa de cemento Yura S A, Arequipa 2015

1.5.2. Hipótesis específicas

- La ampliación de fajas transportadoras en la empresa de cemento Yura S.A. es necesaria e importante.
- El transporte de agregado en la empresa de cemento Yura S.A. debe precisarse.

1.5.3. Identificación y clasificación de variables e indicadores

A. Variable independiente (x)

Fajas transportadoras

B. Variable dependiente (y)

Transporte de agregados

C. Operacionalización de hipótesis, variables e indicadores

HIPÓTESIS	VARIABLES	INDICADORES				
La ampliación de fajas		-Tipos de bandas				
transportadoras en la	V. I. (X)	transportadoras				
empresa de cemento Yura		-Superficie móvil				
.S.A. es necesaria e		-Material de fabricación				
importante.	Fajas transportadoras	-Estructura de fajas				
El transporte de agregado	V.D. (Y)	-Secciones				
en la empresa de cemento		-Tipo de material				
Yura S.A. debe precisarse.	Transporte de agregado	-Capacidad				
		-Fases				

1.6. Diseño de la investigación

1.6.1. Tipo de investigación

El tipo de investigación utilizada en esta tesis es de acuerdo al ámbito de campo no experimental.

Y según Fernández Sampieri y Batista, es no experimental.

1.6.2. Nivel de investigación

Según Kelsen, el nivel es explicativo.

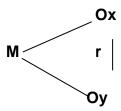
Y según Rebeca Landeau (2007), el tipo de investigación es:

•Según la finalidad: Investigación aplicada.

•Según su carácter: Investigación correlacional.

•Según su naturaleza: Investigación Cualitativo.

•Según el alcance temporal: Investigación transversal.


•Según la orientación que asume: Investigación orientada a la aplicación y comprobación.

1.6.3. Método y diseño de investigación

El método de investigación que enfocamos es cualitativo

1.6.4. Diseño de la investigación

El diseño no experimental es transversal de tipo correlacional

Dónde:

M= Muestra

Ox= Es la variable independiente

Oy= Es la variable dependiente

1.7. Población y muestra de la investigación

1.7.1. Población

La población de estudio está constituida por 85 trabajadores de la empresa de cemento Yura S.A.

1.7.2. Muestra

Es la misma de la población.

1.8. Técnicas e instrumentos y fuentes de recolección de datos

1.8.1. Técnicas

La técnica utilizada es la encuesta.

1.8.2. Instrumento

Cuestionario.

1.8.3. Fuentes

Trabajadores inmersos en las fajas existentes en la empresa de cemento Yura S.A.

1.9. Justificación e importancia de la investigación

1.9.1. Justificación teórica

Desde este punto de vista el presente estudio se considera justificable por su especial originalidad, no habiéndose registrado antecedentes investigativos con idéntico enfoque cuando menos a nivel regional y nacional.

El estudio planteado tiene, así mismo, una legítima relevancia científica, por su aporte cognitivo que implicará aclarar la influencia de la ampliación de fajas transportadoras y transporte de agregado.

1.9.2. Justificación práctica

Apelando al análisis de factibilidad previo, la ejecución del estudio garantizará la disponibilidad de los trabajadores y mejorar significativamente el transporte de agregado y como consecuencia habrá mejor producción de cemento en la empresa de cemento Yura S.A.

1.9.3. Justificación social

Tendrá una cobertura de personal obrero y especializada calificada; además de los beneficios económicos y la población de la ciudad de Arequipa.

1.9.4. Justificación ambiental

El proyecto de investigación es realizó en base a los estándares de calidad ISO 14001 entre otros, teniendo en cuenta las consideraciones del impacto ambiental.

1.9.5. Justificación económica

A inicios de 2014, la empresa Yura S.A. inició un ambicioso proyecto de expansión comercial que implicó duplicar su producción actual de **cemento** de 19 00 a 4 200 TM diarias.

Con este fin, adquirió un nuevo molino de clinker (insumo para el cemento) que reactivaría una mutua línea de producción en su planta.

En el sur, la demanda crece en promedio del 12% a 15% cada año. En los próximos años, la producción total de Yura debe superar los cuatrocientos millones de toneladas anuales.

Lo que es justificable económicamente para que deba ampliarse las fajas para cumplir con los requerimientos que se propone la empresa Yura S.A.

Así también podemos mostrar la siguiente Tabla.

TABLA 1 CONSUMO ESTIMADO=DESPACHO NACIONAL

		Agosto 2014 – Julio		
ESTIMADOS	2014	2015		
Consumo	368 kg	356 kg		
Consumo	11,329 kg	10,329 kg		
Producción	10,675 kg	10,464 MTm		
Importación de cemento	500 Mtm	467 MTm		
Importación de clinker	1,062 MTm	882 Mtm		
Exportación de	306.Mtm	360 Mtm		
cemento				
Exportación de clinker	424 Mtm	463 Mtm		
Inversión privada	0,1 %	n.d.		
Inversión publica	9.1%	n.d.		
Capacidad instalada	15, 080 Mtm	15og		

Fuente: Empresas Asociadas. INEI. SUNAT

Elaboración-Abocen.

Consumo estimado=Despacho nacional

Abocen +Impor. Cemento + despacho nacional

CAPÍTULO II

MARCO TEÓRICO

2.1. Antecedentes de la investigación

2.1.1. Estudios previos

La planta móvil de agregados es una importante fuente de transporte de mineral. Caracteriza las zonas del diseño.

Los áridos materiales granulados que se utiliza para la obtención del mineral se caracterizan por su estabilidad química y su resistencia mecánica. El cobre es uno de los minerales rocosos que se extraen de los yacimientos calcáreos sedimentarios como se muestran en la figura 1. Compuestos mayoritariamente por carbonato de calcio (CaCO3); además de otras sustancias que influyen en su resistencia y coloración, lo que ayuda a su identificación.

FIGURA 1. FOTO DE UN YACIMIENTO DE COBRE

La extracción del material que se encuentra en los yacimientos de cobre es realizada por otra empresa con capacidad y experiencia suficientes para cumplir dichas labores, cumpliendo con todas las normativas locales, quienes proceden, primeramente, a retirar la capa vegetal sobre las rocas. Este desalojo primario es enviado a un vertedero, donde se acumulan los materiales que no sirven como materia prima. En el terreno limpio, se planifica cortes y forma de **extracción** del material; muchas veces utilizando explosivos para voladuras controladas como se ilustra en la **figura 1** y **2**, que, según las necesidades de producción de la planta, se estima las cantidades para almacenar en centros de acopio para su uso gradual posterior.

Si al fragmentar la roca por medio de voladuras, resultó un tamaño mayor al establecido; estas rocas son retiradas para proceder a fragmentarlas por medios mecánicos (utilizando taladros percutores). El material fragmentado, cuando está listo en su tamaño adecuado, es transportado hasta la planta de trituración para su procesamiento.

FIGURA 2. FOTO DE UNA VOLADURA

La planta de agregados como la que se muestra en la **figura 3**, provee al mercado internacional con sus productos que son los áridos para las elaboraciones de celulares, artefactos, diodos, etc.

FIGURA 3.FOTO DE LA PLANTA INDUSTRIAL DE 350 TPH

Fuente: Elaboración propia

Como estaba próxima la movilización de la planta industrial, se desarrolló el proyecto tomando medidas que permiten atender el mercado durante el tiempo que estuvieron los trabajos; fechas en las cuales se programó el desmontaje, traslado y montaje de los equipos principales, auxiliares, etc., así como la adecuación de las vías de circulación.

El árido o agregado se usa en la construcción de carreteras y edificaciones.

Las cuales deben ser elaboradas según diseños establecidos, los cuales varían según su tamaño, carga de trabajo, influencia ambiental, etc.

Según su tamaño, carga de trabajo, influencias ambientales, etc., cumple un ciclo de desarrollo adecuado como el que se ilustra en la figura 4, por lo que sus especificaciones deben cumplir las normas ASTM y MOP .Por ello, en la industria de la minería se requieren de personal técnico que controle mediante pruebas de laboratorio, la calidad de los materiales de la minería, entre ellos el cobre.

Taladrado & Voladura.

Rompetor secundario

Trituradora Tercearia Trituradora Secundaria Trituradora Primaria

Despach o

Asphali Inc.
Rock Inc.
Concrete Inc.

FIGURA 4. ESQUEMA DE CICLO DE DESARROLLO DEL COBRE DESDE EL YACIMIENTO

Fuente: Elaboración propia

2.1.2. Tesis nacionales

A. Antecedente local

Las plantas móviles de trituración Nordberg serie NW, recientes

desarrollos de Metso Minerales, son unidades versátiles y compactas de dos

fases en circuito cerrado, que pueden producir hasta cuatro productos

diferentes de excelente calidad.

Tesis: "Diseño fabricación y montaje de un sistema de trasporte de

carbón minero fino, mediante fajas tubulares".

Autor: Rondón Eguiluz Valdivia Malpartida Steve.

Universidad Católica de Santa María de Arequipa.

B. Antecedente Nacional

Tesis: "Transporte de mineral por medio de fajas transportadoras en

una mina o tajo abierto".

Mina de Cuajone, año 2002.

Autor: MSc. CarloHuisa Ccori

C. Antecedente internacional

Tesis: "Metodología de un programa de mantenimiento a bandas

transportadoras en la empresa calizas industriales del Carmen s.a. de C.V."

Autores: Bertha Aguilar, Carmen Aguilar y Oscar Emmanuel Gallardo

Escamilla.

Instituto Politécnico Nacional. Escuela Superior de Ingeniería Mecánica

y Eléctrica Culhuacan - México, año 2010.

12

2.2. Bases teóricas

2.2.1. Rodillos

 Rodillos autoalineables. Se encargan de alinear la banda transportadora cuando esta, debido al uso, se desalinea provocando derrame de material.

FIGURA 5. TRES DIFERENTES TIPOS DE RODILLOS EN MÓDULOS DE TRES

Fuentes: Elaboración propia

 Rodillos de impacto. Tienen un recubrimiento de caucho en forma de discos que absorben el impacto durante la caída de material sobre la banda en los extremos de carga.

Figura 6. Módulos de rodillos de impacto

FIGURA 7. RODILLOS DE CARGA MONTADOS EN BASTIDOR

Fuente: Elaboración propia

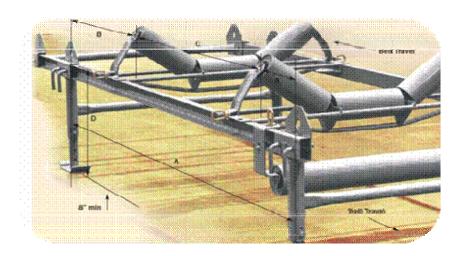

• Rodillos de carga. Son los que dan soporte a la banda a lo largo del recorrido. Su superficie es plana para evitar de formaciones en el trayecto de la banda. Son los elementos numerosos en el transportador y contienen rodamientos que pueden ser sellados o de lubricación. Estos últimos representan una de las tareas más comunes del mantenimiento, pues se debe verificar su estado constantemente.

FIGURA 8. RODILLOS DE RETORNO EN PARTE SUPERIOR DE COLA DE BANDA

 Rodillos de retorno. Se encuentran por la parte inferior de la estructura y solamente dan soporte a la banda en su trayectoria de retorno, ya que esta se encuentra sin carga; sin embargo, como están en contacto con la superficie de cargas debe revisar que se encuentren libres de materiales que pudieran rasgar o agrietarla banda.

FIGURA 9. RODILLOS DE RETORNO

Bastidor con módulos de rodillos. Generalmente hay tres rodillos de carga por dos

 Bastidores. Son los elementos estructurales de las bandas transportadoras. Proporcionan soporte a la cinta o banda incluyendo la carga transportada, es del punto de alimentación hasta el de descarga.

2.3. Marco conceptual

2.3.1. Plantas móviles de agregado

Es un sistema utilizada para la fabricación de los agregados a partir de la materia prima que lo compone como arena, hormigón cemento agua (también puede incluir otros componentes de refuerzo como aditivos).

2.3.2. Faja y zaranda

Como sistema de alimentación y alimentador vibratorio, con zaranda de movimiento elíptico, también tiene un chasis; además cuenta con un sistema de Loop científico y centrales eléctricas.

2.4. Memoria de cálculos: "Estructura Metálica Faja Transportadora De Bultos-Proyecto Misti"

2.4.1. Longitud de la faja transportadora

La longitud de la faja transportadora va desde la cancha Clinker hasta el horno vertical Misti, que hace un recorrido de unos 69.13 metros lineales.

2.4.2. Metrado de cargas para estructura de la faja, estructura de faja, polea de cola y cabeza

Cargas muertas (D)

El peso propio de los elementos modelados será incluido como una propiedad del material en el programa de análisis.

Sobre las pasarelas:

- Gratín = 46 kg/m²
- Baranda = 18 kg/m

Sobre la celosía:

- Polines de carga = 15 kg x unidad
- Polines de retorno = 15 kg x unidad
- Polines de impacto = 15 kg x unidad
- Correa o banda = 27 kg/m
- Faldón = 75 kg/m

Sobre las estructuras de faja existente:

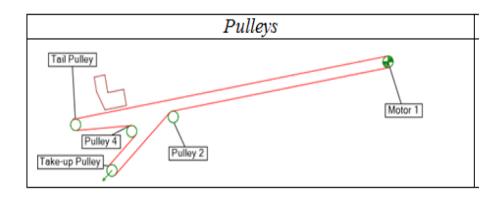
- Polea motor o de cola = 156 kg
- Polea Cabeza = 156 kg
- Peso polea deflectora = 100 Kg x unidad

Sobre las estructuras de faja nueva:

- Polea Motor o de cola = 156 kg
- Polea Cabeza = 156 kg
- Poleas de contrapeso + Contrapeso = 1700 Kg

Cargas vivas (L)

Sobre la carga de las pasarelas:


- S/c en pasarelas = 153 kg/m

Sobre la celosía (MAT):

- Mineral transportado = 66.2 kg/m

Tensiones en faja existente:

FIGURA 10. TENSIONES MÁXIMAS EN OPERACIÓN (MOVIMIENTO RÍTMICO)

Fuente: Elaboración propia

TABLA 2. TENSIONES EN FAJA NUEVA.

Teniendo rea	accione	s de las f	uerzas								
Poleas	En	Entrada	Salida	Polea,	Teniendo	direcci	iones	Teniendo	direcci	ones	
	volver	Vector	Vector	eje y	horizontals	s (Kn)		verticals (kN)		
		del	del	maza	Estructura	FL-N	Estructura	Estructura	FL-N	Estructura	ì
		ángulo	Angulo		minima	Caso	Maxima	Minima	Caso	Maxima	de
					de		deTensión	de		Tension	
					tension			Tension			
Motor 1	180	190	190	99	-9.57	-14.0	-20.7	-2.66	-3.44	-4.62	
Polea 2	35	10	225	70	0.52	1.08	1.37	-3.40	-3.67	-3.98	
Comenzar	180	45	45	70	6.98	7.89	9.17	6.29	7.20	8.48	
correa											
Polea 4	139	225	184	108	-9,06	-10,8	-13,9	-5,19	-5.83	-6.95	
Polea de cola	174	4	10	74	11.0	13.6	18,9	0.70	1.03	1.74	

Fuente: Elaboración propia

FIGURA 11. TENSIONES MÁXIMAS EN OPERACIÓN (MOVIMIENTO RÍTMICO)

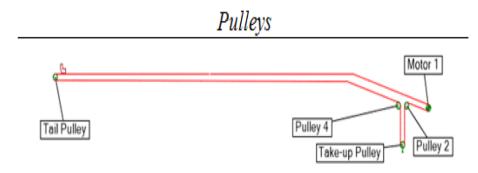


TABLA 3. CARGA DE VIENTO (W)

Teniend	o reacc	iones	de las	fuerza	ıs						
Poleas	Envolver	Entrada	Salida	Polea,	Teniendo	direco	iones	Teniendo	direcci	ones	
		Vector	Vector	eje y	horizontals	s (Kn)		verticals (kN)		
		del	del	maza	Estructura	FL-N	Estructura	Estructura	FL-N	Estructura	а
		ángulo	ángulo		minima	Caso	Maxima	Minima	Caso	Maxima	de
					de		deTensión	de		Tension	
					tension			Tension			
Motor 1	180	165	165	130	0.00	-15.3	0.00	0.00	2.82	0.00	
Polea 2	105	345	270	82	0.00	6.64	0.00	0.00	-9.85	0.00	
Comenzar	180	90	90	70	0.00	0.00	0.00	0.00	13.3	0.00	
correa											
Polea 4	75	270	165	82	0.00	-8.14	0.00	0.00	-6.56	0.00	
Polea de	180	360	0	114	0.00	18.9	0.00	0.00	-1.15	0.00	
cola											

Fuente: Elaboración propia

Se tomará en cuenta el estado de carga para la fuerza de viento transversal a la celosía (Wy).

Velocidad básica del viento:

V= 75 km/h (Hasta una altura de 10m)

P= 28.1 kg/m²

Coeficiente de exposición total = 1.4

Por lo que la presión a aplicar sobre la estructura será:

 $W = 39.4 \text{ kg/m}^2$

- Carga de viento sobre la estructura (FAJA)

Se aplicará una fuerza uniformemente repartida en los elementos estructurales expuestos a viento en cada dirección usando como carga total sobre el ducto Ww= 39.4 kg/m²

Se consideran las siguientes dimensiones expuestas para los elementos estructurales:

- Bridas:

h= 76.2 mm

- Columnas:

h= 203.2 mm

Wwy= 3.0 kg/m (En bridas)

Wwy= 8.0 kg/m (En columnas)

Carga de sismo (E)

En la estructura:

Peso contribuyente al sismo:

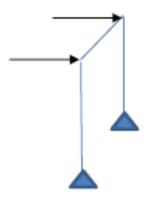
P = 38631 kg (Sap)

Cálculo de la fuerza sísmica

Dirección longitudinal a la faja

Coeficientes sísmicos:

Z = 0.4


U=1

S=1.2

Tp = 0.6

C = 2.5

R = 2.5

(Estimado para estructura de 01 grado de libertad)

$$Vx = ZUSC \times P = 0.48$$
R

xP= 18543 kg (Se aplica esta carga en los apoyos proporcional a la longitud).

Dirección perpendicular a la faja

Coeficientes sísmicos

Z = 0.4

U= 1

S= 1.2

Tp = 0.6

C = 2.5

R= 6 (Soportes arriostrados)

$$Vy = \frac{ZUSC}{R} xP = 0.2$$

xP= 7726 kg (Como carga distribuida a lo largo de la faja).

Peso contribuyente al sismo:

P = 1560 kg

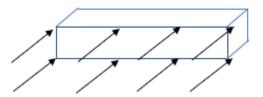
Cálculo de la fuerza sísmica

Dirección longitudinal a la faja

Coeficientes sísmicos

Z = 0.4

U= 1


S = 1.2

Tp = 0.6

C = 2.5

R = 9.5

(Pórtico rígido)

$$Vx = \frac{ZUSC}{R}x P = 0.1263xP = 197 kg$$

Dirección perpendicular a la faja

Coeficientes sísmicos

Z = 0.4

U=1

S = 1.2

Tp = 0.6

C = 2.5

R = 6

(Pórtico arriostrado)

$$Vx = \underline{ZUSC}_XP = 0.2$$
 $xP = 312 \text{ kg}$

2.4.3. COMBINACIONES DE CARGA

Para el diseño de las estructuras, se emplearán las siguientes combinaciones de carga:

U1: 1.2D+1.6L+1.6MAT

U2: 1.2D+1.6L+1.6MAT+1.6MOVIMIENTO RITMICO

U3: 1.2D+0.5L+1.6MAT+0.8WY+1.6MOVIMIENTO RITMICO

U4: 1.2D+1.3WY+0.5L+MAT+MOVIMIENTO RITMICO

U5: 1.2D+0.5L+MAT+MOVIMIENTO RITMICO+EX

U5A: 1.2D+0.5L+MAT+MOVIMIENTO RITMICO-EX

U6: 1.2D+0.5L+MAT+MOVIMIENTO RITMICO+EY

U7: 0.9D+1.3WY

U8: 0.9D+EX

U8A: 0.9D-EX

U9: 0.9D+EY

Para el cálculo de las deflexiones v

2.4.3.1. Análisis estructural

Modelo estructural

2.4.3.2. Verificación de deflexiones

Sección típica

1044 1044 375 850 R27

FIGURA 12. SECCIÓN TÍPICA

Fuente: Elaboración propia

Se verifican las deflexiones para las dimensiones y perfiles asumidos en el modelo estructural.

- Deflexión en la viga de celosía

L1= 9.2 m (Tramo I)

Comb. S1

Dv= 0.48 cm => L/ 1917 << L/360 Ok!

L2= 12 m (Tramo II)

Comb. S1

Dv= 0.66 cm => L/ 1818 << L/360 Ok!

L3= 12 m (Tramo III)

Comb. S1

Dv= 0.76 cm => L/ 1579 << L/360 Ok!

L4= 11.989 m (Tramo IV)

Comb. S1

Dv= 0.72 cm => L/ 1665 < L/360 Ok!

L3= 12 m (Tramo V)

Comb. S1

Dv= 0.63 cm => L/ 1905 << L/360 Ok!

L4= 12 m

(Tramo VI) Comb. S1

Dv = 0.81 cm = L/1481 < L/360 Ok!

- Deflexión en pasarela (volado) en tramo de Celosía

L = 0.8 m

Comb. S1

Dv= 0.38 cm => L/211 < L/120 (en volados) Ok!

- Deflexión de vigas de pasarela

L = 0.8 m

Comb. S1

Dv = 0.38 cm => L/211 < L/180 (en volados)

Desplazamientos por carga de sismo en soportes verticales

Sismo en dirección longitudinal a la estructura de faja (X-X)

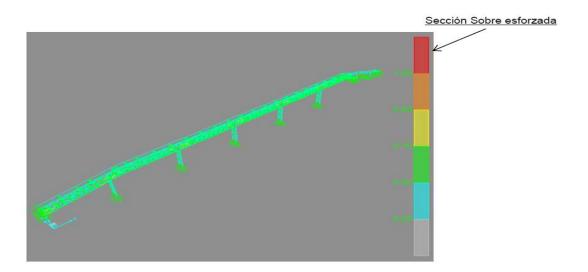
Dx = 0.13 cm

h = 4.93 m

0.75DxR/h=0.05% << 1.0% Ok!

Sismo en dirección transversal a la estructura de faja (Y-Y)

Dy=0.2 cm


h= 4.93 m

0.75DyR/h= 0.18% << 1.0% Ok!

2.4.3.3. Diseño de los elementos estructurales

 El diseño de los elementos estructurales se realizará con el programa SAP 2000, A continuación, se muestran las ratios de demanda de capacidad de los elementos:

FIGURA 13. DISEÑO

2.4.3.4. Ratios de demanda de capacidad de los elementos

Elementos utilizados

Celosía

Brida Superior:

L-3,5"x3,5"x1/4"

Brida Inferior:

L-3,5"x3,5"x1/4"

Montantes (verticales y horizontales):

L-2"x2"x3/16"

Diagonales

L-2"x2"x1/4" (En tramo de faja existente)

L-2"x2"x3/16"

Diagonales Horizontales

L-2"x2"x3/16"

Pasarela

C 6"x8.2 (Se originan desde las montantes de la celosía)

L-2"x2"x3/16" (Viga longitudinal de pasarela, donde se apoya el gratíng)

Soportes verticales

Columnas: W8x21

Puntales: L-3"x3"x3/16" Arriostres: L-3"x3"x3/16"

Soportes o puntales verticales de celosía a estructura de faja

Columnas: C-8x11.5

Listado de pesos aproximados según SAP: (*)

Elemento	Peso
L-3,5"x3,5"x1/4"	4338.3 kg
L-3"x3"x3/16"	388.5 kg
L-2"x2"x3/16"	2139.6 kg
L-2"x2"x1/4"	135.8 kg
C 6"x8.2	1153.2 kg
W8x21	1521.2kg

^{*} Son pesos referenciales.

2.4.3.5. Diseño de conexiones

Conexión de celosía a soporte vertical

Máxima acción en el apoyo.

Pu= 7622.71 kg

Diseño de pin

Considerando Pin 1 " f SAE 1045

TABLA 4. SAE 1045

Propiedad	Valor en unidades Métricas		Valor en unidades americanas	
Densidad	7.872 *10 ³	Kg/m ³	491.4	Lb/ft ³
Modulos de elasticidad	201	GPA	29100	Ksi
Expansion termica	11.7*10 ⁻⁶	0C ⁻¹	6.5*10 ⁻⁶	in/(in*: 0F)
Capacidad de calor específica	486	J/(Kg*k)	0.116	BTU/(lb*0F)
Conductividad térmica	50.9	W/(M*k)	353	BTU*in/(hr*ft ² *OF)
Resisitividad eléctrica	1.62* 10- ⁷	Ohm*m	1.62*10- ⁵	Ohm*cm
Inesistencia a la tracción (laminado en caliente	565	MPA	81900	Psi
Limite elástico (laminado en caliente	310	MPA	45000	Psi
Elongación (laminado en caliente)	16	%	16	%
Dureza (laminado en caliente)	84	RB	84	RB
Resistencia a la tracción (dibujado en frío)	625	MPA	90600	psi
Limite elástico (dibujado en frío)	530	MPA	769 00	Psi
Elongación (dibujado en frío)	12	%	12	%
Dureza (dibujado en frío)	88	RB	88	RB

Fuente: Norma SAE 1045

Fu= 565 Mpa

Fu= 5763 kg/cm²

TABLA 5. TENSIÓN NOMINAL DE CONEXIONES Y PARTES ROSCADAS

TABLA Tensión Nominal de Conectores y Partes Rosea das. k	tif cm ¹ (MPa)	
Descripción del conector	Tension do Tracción Nominal, fkgf/.cm² (MPA) (*)	Tensión de corte Nominal en conexiones de de Tipo Aplastamiento, F _m . kgf/cm ² (MPa)
Pernos A3Q7	3.160 (31 d)^	1 .900 (1 S&)IDPI<>liai
Grupo A (Ejemplo. Peros A325), cuando la rosca no está excluida en el plano de corte	0,320 (630)	3,000 (373) i"'
Grupo A (ej, Pernos A325), cuando la rosca Esta excluida en el plano de corle		4,760 (JS9) ^b
Grupo B (ej. Pernos A490), cuando la rosca no está excluida en el plano de corte	7,950 < <i>7SO</i>)	4,700
Grupo B (ej. Pernos A490), cuando la rosca está excluida en el plano de corte	7,950 f78Q)	5,WO (579) ¹⁰
partes roscadas que cumplen los requisitos de la Sección A3.4, cuando la rosca no está excluida en el plano de corte	76F,,	O.JBOFj" ¹

Partes roscadas que cumplen los requisitos de la sección A34, cuándo la rosca está excluida en el plano de corte	"	o, SBOFJ^
--	---	-----------

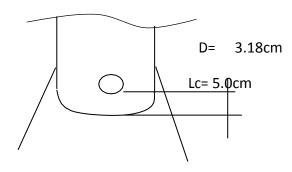
^{*)} Para pernos de alta resistencia sujetos a fatiga por cargas de tracción, ver anexo 3,

Fuente: Norma din

Soporte

Fnt= 0.5Fu=2881.5kg/cm²(Esfuerzo nominal al corte)Resistencia al corte del Pin acorte

PRn = Prnt(Ac) Según AISCJ3-1


?=0.75

Ac= 10.14 cm² (Área de corte en este caso es 2A(P=11/4"))

PRn= 21914kg>PuOK!

Usar: Pin 1" Barra lisaSAE-1045

Diseño de la cartela por aplastamiento

Suponemos plancha con espesor t= 1.91cm

Resistencia al aplastamiento del material conectado Ace

J7. Resistencia de aplastamiento

La resistencia de aplastamiento de diseño ${}^{\phi}R_{11}$ o la resistencia de aplastamiento disponible, Rn Ω de superficies en contacto debe ser determinada para el estado límite de aplastamiento (fluencia de comprensión local) como se muestra a continuación:

^{*)} Para conexiones en los extremos con un patrón de conectores con una longitud mayor a 38 in (965 mm), Fm debe ser reducido a un 83.3 % de los valores tabulados. La longitud del patrón de conectores es la máxima distancia paralela a la línea de fuerzas entre la línea central de los pernos que conectan dos partes con una superficie de apriete.

^{*)} Para pernos A307 los valores tabulados deben ser reducidos por el 1% para cada 2 mm / 5 diam. De longitud en el agarre.

^{*)} Rosca permitida en los planos de corte

$$\phi = 0.75 \; (LRFD)$$
 $\Omega = 2.00 \; (ASD)$

La resistencia de aplastamiento nominal Rn, debe ser determinada de acuerdo con lo siguiente:

Para superficies terminadas, pasadores en perforaciones de borde, taladros o punzo nados y extremos de atiesadores de aplastamiento ajustado

$$Rn=1.8F_yA_{pb}$$

Donde:

 F_V = Tensión de fluencia mínima especificada, kgf/cm² (MPa)

 A_{pb} = área proyectada de apoyo, cm² (mm²)

Soporte

Apb=Dxt=6.05cm²

Luego:

Rn=27544kg

□Rn= 20658 kg >Pu

Usar: 01 PLANCHA3/4"yDOSDE3/8"

Diseño de conexión en la celosía

Verificación por corte pernos

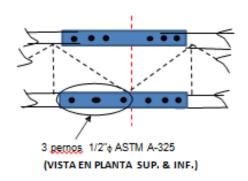
Vu = 6653kg (actuante)

Considerando pernos ASTM A-325

 $Fu = 8436 Kg/cm^2$

Fnv =0.60*Fu=5062Kg/cm²

= 0.75(esfuerzo nominal al corte)


 $A = 1.27 \text{ cm}^2$

Resistencia al corte del perno

□Rn= 4821kg >Vu.....**OK!**

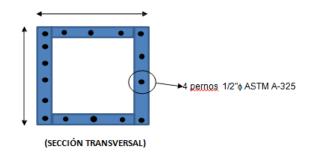
N° de pernos= 1.4

Usar: 3 pernos 1/2"□□ASTMA-325

Diseño de plancha conectora

Considerando una plancha e=3/8"

 $Pu = \Box \Box F y Ag$


Pu=6653Kg(actuante)

Ag=3.825pulg²

Se tiene:

Pu=379536Kg>>Pu(actuante)

Utilizar plancha de e =3/8"

Soldadura en la conexión (SOLDADURA DE FILETE)

Tracción perpendicular al área efectiva, para este tipo de conexiones.

Ws= 0.48 cm (espesor del ala del ángulo)

Te=0.67cm

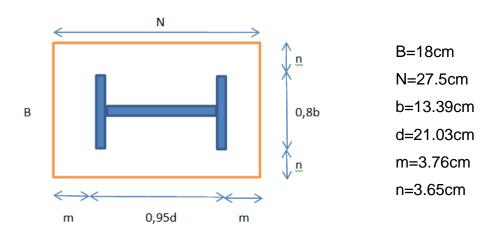
(0,6Fexx)=2530.8 Kg/cm2

Longitud de soldadura de 16,4 cm. tenemos:

□ Rn= 20966Kg>Ru=12413 Kg (soldadura)

□Rn= 14762Kg>Ru=12413 Kg (material base)

La resistencia de la soldadura debe ser igual a la resistencia del material. Ahora, las cargas actuantes son menores a la resistente. Por lo que se concluye que la soldadura está cumpliendo los requerimientos de detracción.


2.4.4. De plancha base para columna w8x21

Se toma la carga axial última en la base de la sección:

Pu=7732kg

Pu'=16062 kg (50% del resistente)

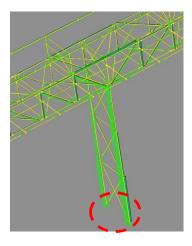
Se calcula la resistencia para la sección de la plancha base:

Como el área de la plancha es menor que la superficie de concreto, entonces: Área de la sección del pedestal=2600cm2

Pp= 270002 kg

Pp= 162001 kg >>Pu Ok!

Cálculo del espesor de la plancha base


Mux= 5930 kg-cm Muy= 4129 kg-cm

□Mn > Mu

 \square Mnx= 0,9*(N*t^2/4)*Fy

>Mux t=
$$\sqrt{(4^* Mux)/(0.9^*N^*Fy)}$$

$$t = \sqrt{(4^* Muy)/(0.9^* B^* Fy)}$$

Usar: PL-3/8"

Cálculo de pernos del anclaje

Tu= 3234 kg (50%delresistente)

Hallamos la resistencia a tracción de los pernos: Pernos ASTM A36, Fu=4200kg/cm2

□Tn= 24948 kg >>Tu

USAR: 4 PERNOS ASTM A-36 5/8"φ

2.4.3.6. Anclajes químicos (varilla has - verificar por especialista) <u>Cálculo de pernos de anclaje químico</u>

Tu=4450kg (Carga actuante en el apoyo)

Hallamos la resistencia a tracción de los pernos

Pernos ASTM A36, Fu=4200kg/cm2

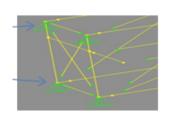
□Tn= 8977.5kg >>Tu

Aseguramos que no falle a tracción

USAR:4 PERNOS ASTM A-36 3/4"□□(VERIFICAR POR HILTI OSIMILAR)

Cálculo de pernos de anclaje químico

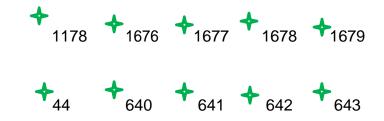
Mu=10749kg-cm


$$t = \sqrt{(4^* Muy)/(0.9^* b^* Fy)}$$

t=1.45cm<>PL-5/8"

Reacciones en los poyos

Reacciones en inserto (inicio de celosía sobre faja existente)



VISTA

VERTICALES DE CELOSÍA

LLEGADA DE CELOSÍA A PLATAFORMA

1168

4 627

SOPORTES VERTICALES DE FAJA NUEVA LLEGADA A POLEA MOTRIZ

ARRANQUE DE FAJA EXISTENTE

† 1365

4 254

Se listan las acciones en los apoyos de las estructuras metálicas para los estados de carga usados:

TABLA 6. REACCIONES CONJUNTAS

Dagasianas		EV	EV	E 7
Reacciones		FX	FY	FZ
<u> </u>	DESCARCA	Kgf	Kgf	Kgf
	DESCARGA	0	0	409
9	POLINES DE CARGA	0	0	43
9	POLINES DE RETORNO	0	0	8
9	PISOS	0	0	251
9	BARANDA	0	0	157
9	FALDÓN	0	0	0
9	POLEA MOTRIZ	0	0	-1
9	POLEA DE CABEZA	_	0	-1
9	CONTRAPESO	0	0	761
9	BANDA		0	16
9	POLEAS DEFLECTORAS		0	1
9	POLINES DE IMPACTO		0	0
9	MATERIAL		0	90
9	PASARELA		0	1 044
9	MOVIMIENTO RÍTMICO	0	0	705
9	WY	0	0	-95
9	EX	0	0	-185
9	EY	0	0	-80
10	DESCARGA	1106	-15	627
10	POLINES DE CARGA	256	1	133
10	POLINES DE RETORNO	41	0	21
10	PISOS	401	-41	265
10	BARANDA	233	-28	157
10	FALDÓN	1	0	0
10	POLEA MOTRIZ	-9	0	-6
10	POLEA DE CABEZA	9	0	5
10	CONTRAPESO	40	0	10
10	BANDA	61	0	30
10	POLEAS DEFLECTORAS	128	1	83
10	POLINES DE IMPACTO	1	0	0
10	MATERIAL	349	1	171
10	PASARELA	1666	-171	1 102
10	MOVIMIENTO RÍTMICO	89	1	188
10	WY	-212	-23	-74
10	EX	-1494	-23 -2	-339
10	EY	-1494 -958		-200
10 11	DESCARGA	-956 -559	-296 20	-200 -59
<u>11</u> 11	POLINES DE CARGA	-559 -174	-1	-59 -29
<u>1 1</u> 11	POLINES DE CARGA POLINES DE RETORNO	-174 -26	0	-29 -4
<u>11</u> 11	PISOS	-179	53	- 4 -13
11 11	BARANDA	-101	37	-13 -7
11 11	FALDON	1	0	0

11	POLEA MOTRIZ	12	0	2
11	POLEA DE CABEZA	-3	0	-1
11	CONTRAPESO	37	0	5
11	BANDA	-31	0	-5
11	POLEAS DEFLECTORAS	-132	<u>-1</u>	-22
11	POLINES DE IMPACTO	1	0	0
11	MATERIAL	-181	-2	-31
11	PASARELA	-743	220	-55
11	MOVIMIENTO RÍTMICO	-821	-6	-127
11	WY	-157	-84	-23
11	EX	-1594	-4	-223
11	EY	-878	-339	-132
44	DESCARGA	0	69	1 428
44	POLINES DE CARGA	0	13	225
44	POLINES DE RETORNO	0	2	38
44	PISOS	0	8	557
44	BARANDA	0	3	336
44	FALDÓN	0	0	0
44	POLEA MOTRIZ	0	4	76
44	POLEA DE CABEZA	0	4	76
44	CONTRA PESO	0	-1	-14
44	BANDA	0	3	61
44	POLEAS DEFLECTORAS	0	1	22
44 44	POLINES DE IMPACTO	0	0	0
	MATERIAL	0	20	353
44	PASARELA	0	33	2 315
44	MOVIMIENTO RÍTMICO	0	18	323
44	WY	0	-101	-1 019
44	EX	0	29	560
44	EY	0	-504	-5 098
254	DESCARGA	0	0	57
254	POLINES DECARGA	0	0	34
254	POLINES DE RETORNO	0	0	5
	PISOS	0	0	8
	BARANDA	0	0	4
254	FALDÓN	0	0	0
	POLEA MOTRIZ	0	0	0
	POLEA DE CABEZA	0	0	66
	CONTRAPESO	0	0	1
	BANDA	0	0	8
	POLEAS DEFLECTORAS	0	0	23
	POLINES DE IMPACTO	0	0	0
254	MATERIAL	0	0	45
254	PASARELA	0	0	31
254	MOVIMIENTO RÍTMICO	0	0	119
254	WY	0	0	-2
254	EX	0	0	-24
254	EY	0	0	0
268	DESCARGA	0	0	56

268	POLINES DE CARGA	0	0	13
268	POLINES DE RETORNO	0	0	2
268	PISOS	0	0	15
268	BARANDA	0	0	9
268	FALDÓN	0	0	18
268	POLEA MOTRIZ	0	0	46
268	POLEA DE CABEZA	0	0	1
268	CONTRAPESO	0	0	5
268	BANDA	0	0	5
268	POLEAS DEFLECTORAS	0	0	0
268	POLINES DE IMPACTO	0	0	15
268	MATERIAL	0	0	27
268	PASARELA	0	0	64
	MOVIMIENTO RÍTMICO	0	0	-23
268	WY	0	0	17
268	EX	0	0	166
268	EY	0	0	72
	DESCARGA	-198	0	130
	POLINES DECARGA	-33	0	46
285	POLINES DE RETORNO	-6	0	9
	PISOS	-69	0	11
	BARANDA	-40	0	6
	FALDÓN	-7	0	84
	POLEA MOTRIZ	7	0	32
	POLEA DE CABEZA	-2	0	0
285	CONTRAPESO	-24	0	4
285	BANDA	-12	0	16
	POLEASDEFLECTORAS	2	0	0
	POLINES DE IMPACTO	-5	0	67
	MATERIAL	-68	0	94
285	PASARELA	-286	0	45
285	MOVIMIENTO RÍTMICO	282	0	-17
		-77	-29	12
	EX	-744	0	66
285	EY	-322	0	51
	DESCARGA	-37	0	148
286	POLINES DE CARGA	-5	0	51
	POLINES DE RETORNO	-1	0	10
286	PISOS	-14	0	7
286	BARANDA	-8	0	4
	FALDÓN	4	0	11
286	POLEA MOTRIZ	-2	0	-1
286	POLEA DE CABEZA	0	0	0
286	CONTRAPESO	-5	0	3
286	BANDA	-2	0	18
286	POLEAS DEFLECTORAS	0	0	0
286	POLINE DE IMPACTO	3	0	9
286	MATERIAL	-10	0	106
286	PASARELA	-58	0	29
200	I / WINLLA	1.00	V	_ J

206	MOVIMIENTO RÍTMICO	37	0	1
286 286	WY	-15	10	<u> </u> 1 7
		-13 -144		5
286	EX EY		0 	၁ 29
286	DESCARGA	-64	0	
288		-181		147
288	POLINES DE CARGA	-26	0	52
288	POLINES DE RETORNO	-5	0	10
288	PISOS	-69	0	14
288	BARANDA	-40	0	8
288	FALDÓN POLEA MOTRIZ	1	0	-2
288	POLEA MOTRIZ	-7	0	2
288	POLEA DE CABEZA	-3	0	1
288	CONTRAPESO	-19	0	-1
288	BANDA	-9	0	19
288	POLEAS DEFLECTORAS	2	0	-1
288	POLINES DE IMPACTO	1	0	-1
288	MATERIAL	-52	0	108
288	PASARELA	-285	-1	57
288	MOVIMIENTO RÍTMICO	130	0	-39
288	WY	-90	-34	31
288	EX	-772	0	185
288	EY	-363	-6	114
289	DESCARGA	-92	0	234
289	POLINES DE CARGA	-14	0	65
289	POLINES DE RETORNO	-3	0	12
289	PISOS	-31	0	33
289	BARANDA	-18	0	19
289	FALDÓN	0	0	0
289	POLEA MOTRIZ	-1	0	-1
289	POLEA DE CABEZA	0	0	-1
289	CONTRAPESO	-23	0	40
289	BANDA	-5	0	23
289	POLEAS DEFLECTORAS	0	0	0
	POLINES DE IMPACTO	0	0	0
289	MATERIAL	-29	0	134
	PASARELA	-130	0	136
289	MOVIMIENTO RÍTMICO	6	0	42
289	WY	-5	1	-38
289	EX	-101	0	-186
289	EY	-47	-1	-87
640	DESCARGA	0	74	1 521
640	POLINES DECARGA	0	10	186
640	POLINES DE RETORNO	0	2	35
640	PISOS	0	13	630
640	BARANDA	0	7	383
640	FALDÓN	0	0	0
640	POLEA MOTRIZ	0	0	6
640	POLEA MOTRIZ POLEA DE CABEZA	0	1	11
640	CONTRAPESO	0	0	-2
040	CONTRAFEOU	U	U	74

			•	
	BANDA	0	4	68
640	POLEAS DEFLECTORAS	0	0	-5
640	POLINES DE IMPACTO	0	0	0
640	MATERIAL	0	22	391
640	PASARELA	0	54	2 619
640	MOVIMIENTO RÍTMICO	0	2	40
640	WY	0	-120	-1 271
640	EX	0	3	59
640	EY	0	-606	-6 495
641	DESCARGA	0	74	1 541
641	POLINES DE CARGA	0	11	194
641	POLINES DE RETORNO	0	2	36
641	PISOS	0	12	637
641	BARANDA	0	6	387
641	FALDÓN	0	0	0
641	POLEA MOTRIZ	0	0	-1
641	POLEA DE CABEZA	0	0	-1
	CONTRAPESO	0	0	2
	BANDA	0	4	70
	POLEAS DEFLECTORAS	0	0	0
	POLINES DE IMPACTO	0	0	0
	MATERIAL	0	23	401
	PASARELA	0	50	2 650
	MOVIMIENTO RÍTMICO	0	1	10
	WY	0	-113	-1 207
	EX	0	-1	-7
	EY	0	-582	-6 241
_	DESCARGA	0	0	239
	POLINES DECARGA	0	0	44
	POLINES DE RETORNO	0	0	8
	PISOS	0	0	-129
	BARANDA	0	0	-97
	FALDÓN	0	<u>0</u>	0
	POLEA MOTRIZ	0	0	-1
	POLEA MOTRIZ POLEA DE CABEZA	0	0	-1
	CONTRAPESO	0	0	764
	BANDA	0	0	16
		0		1
	POLEAS DEFLECTORAS	-	0	1
	POLINES DE IMPACTO	0	0	0
	MATERIAL	0	0	92
	PASARELA	0	0	-534
	MOVIMIENTO RÍTMICO	0	0	706
1168		0	0	98
1168		0	0	-194
1168		0	0	95
	DESCARGA	885	0	473
	POLINES DE CARGA	249	0	130
	POLINES DE RETORNO	40	0	21
1169	PISOS	-28	3	-49

1169BARANDA	-51	2	-51
1169 FALDÓN	1	0	0
1169 POLEA MOTRIZ	-9	0	-6
1169 POLEA DE CABEZA	8	0	5
1169 CONTRAPESO	36	0	9
1169 BANDA	59	0	29
1169 POLEAS DEFLECTORAS	125	0	82
1169 POLINES DE IMPACTO	0	0	0
1169 MATERIAL	337	0	166
1169 PASARELA	-115	13	-203
1169 MOVIMIENTO RÍTMICO	100	0	192
1169WY	207	2	72
1169 EX	-1372	3	-285
1169 EY	924	22	190
1170 DESCARGA	-507	-3	-64
1170 POLINES DE CARGA	-175	0	-29
1170 POLINES DE RETORNO	-26	0	-4
1170 PISOS	-19	-10	-7
1170 BARANDA	5	-8	-3
1170 FALDÓN	1	0	0
1170 POLEA MOTRIZ	12	0	2
1170 POLEA DE CABEZA	-3	0	0
1170 CONTRAPESO	30	0	5
1170 BANDA	-33	0	-5
1170 POLEAS DEFLECTORAS	-129	0	-21
1170 POLINES DE IMPACTO	0	0	0
1170 MATERIAL	-187	0	-31
1170 PASARELA	-80	-40	-31
1170 MOVIMIENTO RÍTMICO	-763	2	-123
1170WY	139	7	21
1170 EX	-1325	4	-209
1170 EY	813	26	125
1178 DESCARGA	0	-71	1 111
1178 POLINES DE CARGA	0	-13	225
1178 POLINES DE RETORNO	0	-2	38
1178 PISOS	0	-14	-165
1178 BARANDA	0	-8	-145
1178 FALDÓN	0	0	0
1178 POLEA MOTRIZ	0	-4	77
1178 POLEA DE CABEZA	0	-4	76
1178 CONTRAPESO	0	1	-13
1178 BANDA	0	-3	61
1178 POLEAS DEFLECTORAS	0	-1	19
1178 POLINES DE IMPACTO	0	0	0
1178 MATERIAL	0	-20	352
1178 PASARELA	0		-684
1178 MOVIMIENTO RÍTMICO	0	-18	313
1178WY	0	-96	1 023
1178 EX	0	-33	537
<u> · · · → — · · · </u>	1-		ı ·

1178	EY	0	-504	5 113
	DESCARGA	0	0	53
1365	POLINES DE CARGA	0	0	34
1365	POLINES DE RETORNO	0	0	5
1365	PISOS	0	0	-1
1365	BARANDA	0	0	-1
	FALDÓN	0	0	0
1365	POLEA MOTRIZ	0	0	0
1365	POLEA DE CABEZA	0	0	66
1365	CONTRAPESO	0	0	1
1365	BANDA	0	0	8
1365	POLEAS DEFLECTORAS	0	0	23
1365	POLINES DE IMPACTO	0	0	0
1365	MATERIAL	0	0	45
1365	PASARELA	0	0	-4
1365	MOVIMIENTO RÍTMICO	0	0	118
1365	WY	0	0	2
1365	EX	0	0	-24
1365	EY	0	0	0
	DESCARGA	0	0	48
1379	POLINES DE CARGA	0	0	13
1379	POLINES DE RETORNO	0	0	2
1379	PISOS	0	0	-1
1379	BARANDA	0	0	-2
1379	FALDÓN	0	0	18
1379	POLEA MOTRIZ	0	0	46
1379	POLEA DE CABEZA	0	0	1
1379	CONTRAPESO	0	0	6
1379	BANDA	0	0	5
1379	POLEAS DEFLECTORAS	0	0	0
1379	POLINES DE IMPACTO	0	0	15
1379	MATERIAL	0	0	27
1379	PASARELA	0	0	-3
1379	MOVIMIENTO RÍTMICO	0	0	-23
1379	WY	0	0	-19
1379	EX	0	0	166
1379	EY	0	0	-81
1384	DESCARGA	-164	0	125
1384	POLINES DE CARGA	-33	0	46
1384	POLINES DE RETORNO	-6	0	9
1384	PISOS	3	0	0
1384	BARANDA	8	0	-1
	FALDÓN	-7	0	84
1384	POLEA MOTRIZ	7	0	32
	POLEA DE CABEZA	-2	0	0
1384	CONTRAPESO	-25	0	4
1384	BANDA	-12	0	16
	POLEAS DEFLECTORAS	2	0	0
1384	POLINES DE IMPACTO	-5	0	67

1384 PASARELA	1384	MATERIAL	-67	0	94
1384 MOVIMIENTO RÍTMICO					
1384 WY				0	-17
1384 EY 362				-27	-14
1385 DESCARGA			ł	_	
1385 DESCARGA				0	-58
1385 POLINES DE CARGA				0	
1385 POLINES DE RETORNO				0	51
1385 PISOS	1385	POLINES DE RETORNO	-1	0	
1385 BARANDA			1	0	
1385 FALDÓN	1385	BARANDA	2	0	-1
1385 POLEA DE CABEZA 0 0 0 1385 CONTRAPESO -5 0 3 1385 BANDA -2 0 18 1385 POLEAS DEFLECTORAS 0 0 0 1385 POLINES DE IMPACTO 3 0 9 1385 MATERIAL -10 0 106 1385 PASARELA 3 0 -1 1385 MOVIMIENTO RÍTMICO 37 0 1 1385 W 17 15 -7 1385 EX -144 0 5 1385 EY 72 2 -32 1386 DESCARGA -146 0 140 1386 POLINES DE CARGA -25 0 52 1386 POLINES DE RETORNO -5 0 10 1386 POLINES DE RETORNO -5 0 10 1386 PALDÓN 1 0 -2 1386 POLEA MOTRIZ -7 0 2 1386 POLEA MOTRIZ -7 0 2 1386 POLEA DE CABEZA -3 0 1 1386 POLEAS DEFLECTORAS 2 </td <td></td> <td></td> <td>4</td> <td>0</td> <td>11</td>			4	0	11
1385 POLEA DE CABEZA 0 0 0 1385 CONTRAPESO -5 0 3 1385 BANDA -2 0 18 1385 POLEAS DEFLECTORAS 0 0 0 1385 POLINES DE IMPACTO 3 0 9 1385 MATERIAL -10 0 106 1385 PASARELA 3 0 -1 1385 MOVIMIENTO RÍTMICO 37 0 1 1385 WY 17 15 -7 1385 EX -144 0 5 1385 EY 72 2 -32 1386 POLINES DE CARGA -146 0 140 1386 POLINES DE CARGA -25 0 52 1386 POLINES DE RETORNO -5 0 10 1386 BARANDA 8 0 -2 1386 PALDÓN 1 0 -2 1386 POLEA MOTRIZ -7 0 2 1386 POLEA MOTRIZ -7 0 2 1386 POLEAS DEFLECTORAS 2 0 -1 1386 BANDA -9 <t< td=""><td>1385</td><td>POLEA MOTRIZ</td><td>-2</td><td>0</td><td>-1</td></t<>	1385	POLEA MOTRIZ	-2	0	-1
1385 CONTRAPESO			0	0	0
1385 BANDA 1385 POLEAS DEFLECTORAS 0 0 0 1385 POLINES DE IMPACTO 3 0 9 1385 MATERIAL -10 0 106 1385 PASARELA 3 0 -1 1385 MOVIMIENTO RÍTMICO 37 0 1 1385 WY 17 15 -7 1385 EX -144 0 5 1385 EY 72 2 -32 1386 DESCARGA -146 0 140 1386 POLINES DE CARGA -25 0 52 1386 POLINES DE RETORNO -5 0 10 1386 PISOS 4 0 -1 1386 BARANDA 8 0 -2 1386 POLEA MOTRIZ -7 0 2 1386 POLEA MOTRIZ -7 0 2 1386 POLEA MOTRIZ -7 0 2 1386 POLEA DE CABEZA -3 0 1 1386 POLEA DE CABEZA -3 0 1 1386 POLEAS DEFLECTORAS 2 0 -1 1386 POLEAS DEFLECTORAS 2 0 -1 1386 POLEAS DEFLECTORAS 2 0 -1 1386 MATERIAL -51 0 108 1386 PASARELA 15 -1 -5 1386 MOVIMIENTO RÍTMICO 131 0 -39 1386 EX -773 0 185 1386 EY 110 -39 1386 EX -773 0 185 1387 POLINES DE CARGA -78 0 221 1387 POLINES DE RETORNO -3 0 12 1387 PALDÓN 0 0 0			-5	0	
1385 POLINES DE IMPACTO 3					
1385 POLINES DE IMPACTO 3			0	0	
1385 MATERIAL			3	0	9
1385 PASARELA 3				0	
1385 MOVIMIENTO RÍTMICO					+
1385 WY 17 15 -7 1385 EX -1444 0 5 1385 EY 72 2 -32 1386 DESCARGA -146 0 140 1386 POLINES DE CARGA -25 0 52 1386 POLINES DE RETORNO -5 0 10 1386 PISOS 4 0 -1 1386 BARANDA 8 0 -2 1386 FALDÓN 1 0 -2 1386 POLEA MOTRIZ -7 0 2 1386 POLEA MOTRIZ -7 0 2 1386 POLEA DE CABEZA -3 0 1 1386 BANDA -9 0 19 1386 BANDA -9 0 19 1386 POLEAS DEFLECTORAS 2 0 -1 1386 POLINES DE IMPACTO 1 0 -1 1386 MATERIAL -51 0 108 1386 MOVIMIENTO RÍTMICO 131 0 -39 1386 WY 101 -32 -35 1386 EY -773 0 1	1385	MOVIMIENTO RÍTMICO		0	1
1385 EX -1444 0 5 1385 EY 72 2 -32 1386 DESCARGA -146 0 140 1386 POLINES DE CARGA -25 0 52 1386 POLINES DE RETORNO -5 0 10 1386 PISOS 4 0 -1 1386 BARANDA 8 0 -2 1386 FALDÓN 1 0 -2 1386 POLEA MOTRIZ -7 0 2 1386 POLEA MOTRIZ -7 0 2 1386 POLEA DE CABEZA -3 0 1 1386 BANDA -9 0 19 1386 BANDA -9 0 19 1386 POLEAS DEFLECTORAS 2 0 -1 1386 POLINES DE IMPACTO 1 0 -1 1386 MATERIAL -51 0 108 1386 PASARELA 15 -1 -5 1386 MOVIMIENTO RÍTMICO 131 0 -39 1386 EY -773 0 185 1387 POLINES DE CARGA -14				15	-7
1385 EY 72 2 -32 1386 DESCARGA -146 0 140 1386 POLINES DE CARGA -25 0 52 1386 POLINES DE RETORNO -5 0 10 1386 PISOS 4 0 -1 1386 BARANDA 8 0 -2 1386 FALDÓN 1 0 -2 1386 POLEA MOTRIZ -7 0 2 1386 POLEA MOTRIZ -7 0 2 1386 POLEA DE CABEZA -3 0 1 1386 POLEA DE CABEZA -3 0 1 1386 BONTRAPESO -20 0 -1 1386 BANDA -9 0 19 1386 POLINES DE IMPACTO 1 0 -1 1386 POLINES DE IMPACTO 1 0 -1 1386 MATERIAL -51 0 108 1386 PASARELA 15 -1 -5			-144	0	
1386 DESCARGA -146 0 140 1386 POLINES DE CARGA -25 0 52 1386 POLINES DE RETORNO -5 0 10 1386 PISOS 4 0 -1 1386 BARANDA 8 0 -2 1386 FALDÓN 1 0 -2 1386 POLEA MOTRIZ -7 0 2 1386 POLEA DE CABEZA -3 0 1 1386 CONTRAPESO -20 0 -1 1386 BANDA -9 0 19 1386 POLEAS DEFLECTORAS 2 0 -1 1386 POLINES DE IMPACTO 1 0 -1 1386 MATERIAL -51 0 108 1386 PASARELA 15 -1 -5 1386 MOVIMIENTO RÍTMICO 131 0 -39 1386 EX -7773 0 185 1387 DESCARGA -78 0 221 1387 POLINES DE CARGA -14 0 65 1387 POLINES DE RETORNO -3 0 12 1387 FALDÓN			72	2	
1386 POLINES DE CARGA -25 0 52 1386 POLINES DE RETORNO -5 0 10 1386 PISOS 4 0 -1 1386 BARANDA 8 0 -2 1386 FALDÓN 1 0 -2 1386 POLEA MOTRIZ -7 0 2 1386 POLEA DE CABEZA -3 0 1 1386 CONTRAPESO -20 0 -1 1386 BANDA -9 0 19 1386 POLEAS DEFLECTORAS 2 0 -1 1386 POLINES DE IMPACTO 1 0 -1 1386 MATERIAL -51 0 108 1386 PASARELA 15 -1 -5 1386 MOVIMIENTO RÍTMICO 131 0 -39 1386 EX -7773 0 185 1387 DESCARGA -78 0 221 1387 POLINES DE CARGA -14 0 65 1387 POLINES DE RETORNO -3 0 12 1387 FALDÓN 0 0 0			ł		
1386 POLINES DE RETORNO -5 0 10 1386 PISOS 4 0 -1 1386 BARANDA 8 0 -2 1386 FALDÓN 1 0 -2 1386 POLEA MOTRIZ -7 0 2 1386 POLEA DE CABEZA -3 0 1 1386 CONTRAPESO -20 0 -1 1386 BANDA -9 0 19 1386 POLEAS DEFLECTORAS 2 0 -1 1386 POLINES DE IMPACTO 1 0 -1 1386 MATERIAL -51 0 108 1386 PASARELA 15 -1 -5 1386 MOVIMIENTO RÍTMICO 131 0 -39 1386 EX -773 0 185 1386 EY 411 -6 -131 1387 DESCARGA -78 0 221 1387 POLINES DE CARGA -14 0 65 1387 POLINES DE RETORNO -3 0 12 1387 BARANDA 3 0 -2 1387 FALDÓN 0			ł	0	
1386 PISOS 4 0 -1 1386 BARANDA 8 0 -2 1386 FALDÓN 1 0 -2 1386 POLEA MOTRIZ -7 0 2 1386 POLEA DE CABEZA -3 0 1 1386 CONTRAPESO -20 0 -1 1386 BANDA -9 0 19 1386 POLEAS DEFLECTORAS 2 0 -1 1386 POLINES DE IMPACTO 1 0 -1 1386 MATERIAL -51 0 108 1386 PASARELA 15 -1 -5 1386 MOVIMIENTO RÍTMICO 131 0 -39 1386 EX -773 0 185 1386 EY 411 -6 -131 1387 DESCARGA -78 0 221 1387 POLINES DE CARGA -14 0 65 1387 POLINES DE RETORNO -3 0 12 1387 BARANDA 3 0 -2 1387 FALDÓN 0 0 0				0	10
1386 BARANDA 8 0 -2 1386 FALDÓN 1 0 -2 1386 POLEA MOTRIZ -7 0 2 1386 POLEA DE CABEZA -3 0 1 1386 CONTRAPESO -20 0 -1 1386 BANDA -9 0 19 1386 POLEAS DEFLECTORAS 2 0 -1 1386 POLINES DE IMPACTO 1 0 -1 1386 MATERIAL -51 0 108 1386 PASARELA 15 -1 -5 1386 MOVIMIENTO RÍTMICO 131 0 -39 1386 WY 101 -32 -35 1386 EX -773 0 185 1386 EY 411 -6 -131 1387 DESCARGA -78 0 221 1387 POLINES DE CARGA -14 0 65 1387 POLINES DE RETORNO -3 0 12 1387 BARANDA 3 0 -2 1387 FALDÓN 0 0 0			1	0	
1386 POLEA MOTRIZ -7 0 2 1386 POLEA DE CABEZA -3 0 1 1386 CONTRAPESO -20 0 -1 1386 BANDA -9 0 19 1386 POLEAS DEFLECTORAS 2 0 -1 1386 POLINES DE IMPACTO 1 0 -1 1386 MATERIAL -51 0 108 1386 PASARELA 15 -1 -5 1386 MOVIMIENTO RÍTMICO 131 0 -39 1386 EX -773 0 185 1386 EY 411 -6 -131 1387 DESCARGA -78 0 221 1387 POLINES DE CARGA -14 0 65 1387 POLINES DE RETORNO -3 0 12 1387 BARANDA 3 0 -2 1387 FALDÓN 0 0 0				0	
1386 POLEA MOTRIZ -7 0 2 1386 POLEA DE CABEZA -3 0 1 1386 CONTRAPESO -20 0 -1 1386 BANDA -9 0 19 1386 POLEAS DEFLECTORAS 2 0 -1 1386 POLINES DE IMPACTO 1 0 -1 1386 MATERIAL -51 0 108 1386 PASARELA 15 -1 -5 1386 MOVIMIENTO RÍTMICO 131 0 -39 1386 EX -773 0 185 1386 EY 411 -6 -131 1387 DESCARGA -78 0 221 1387 POLINES DE CARGA -14 0 65 1387 POLINES DE RETORNO -3 0 12 1387 BARANDA 3 0 -2 1387 FALDÓN 0 0 0	1386	FALDÓN	1	0	-2
1386 POLEA DE CABEZA -3 0 1 1386 CONTRAPESO -20 0 -1 1386 BANDA -9 0 19 1386 POLEAS DEFLECTORAS 2 0 -1 1386 POLINES DE IMPACTO 1 0 -1 1386 MATERIAL -51 0 108 1386 PASARELA 15 -1 -5 1386 MOVIMIENTO RÍTMICO 131 0 -39 1386 WY 101 -32 -35 1386 EX -773 0 185 1386 EY 411 -6 -131 1387 DESCARGA -78 0 221 1387 POLINES DE CARGA -14 0 65 1387 POLINES DE RETORNO -3 0 12 1387 BARANDA 3 0 -2 1387 FALDÓN 0 0 0	1386	POLEA MOTRIZ	-7	0	
1386 CONTRAPESO -20 0 -1 1386 BANDA -9 0 19 1386 POLEAS DEFLECTORAS 2 0 -1 1386 POLINES DE IMPACTO 1 0 -1 1386 MATERIAL -51 0 108 1386 PASARELA 15 -1 -5 1386 MOVIMIENTO RÍTMICO 131 0 -39 1386 WY 101 -32 -35 1386 EX -773 0 185 1386 EY 411 -6 -131 1387 DESCARGA -78 0 221 1387 POLINES DE CARGA -14 0 65 1387 POLINES DE RETORNO -3 0 12 1387 BARANDA 3 0 -2 1387 FALDÓN 0 0 0	1386	POLEA DE CABEZA	-3	0	
1386 BANDA -9 0 19 1386 POLEAS DEFLECTORAS 2 0 -1 1386 POLINES DE IMPACTO 1 0 -1 1386 MATERIAL -51 0 108 1386 PASARELA 15 -1 -5 1386 MOVIMIENTO RÍTMICO 131 0 -39 1386 WY 101 -32 -35 1386 EX -773 0 185 1386 EY 411 -6 -131 1387 DESCARGA -78 0 221 1387 POLINES DE CARGA -14 0 65 1387 POLINES DE RETORNO -3 0 12 1387 BARANDA 3 0 -2 1387 FALDÓN 0 0 0				0	-1
1386 POLEAS DEFLECTORAS 2 0 -1 1386 POLINES DE IMPACTO 1 0 -1 1386 MATERIAL -51 0 108 1386 PASARELA 15 -1 -5 1386 MOVIMIENTO RÍTMICO 131 0 -39 1386 WY 101 -32 -35 1386 EX -773 0 185 1387 DESCARGA 411 -6 -131 1387 POLINES DE CARGA -14 0 65 1387 POLINES DE RETORNO -3 0 12 1387 PISOS 0 0 2 1387 BARANDA 3 0 -2 1387 FALDÓN 0 0 0				0	
1386 POLINES DE IMPACTO 1 0 -1 1386 MATERIAL -51 0 108 1386 PASARELA 15 -1 -5 1386 MOVIMIENTO RÍTMICO 131 0 -39 1386 WY 101 -32 -35 1386 EX -773 0 185 1387 DESCARGA 411 -6 -131 1387 POLINES DE CARGA -78 0 221 1387 POLINES DE CARGA -14 0 65 1387 POLINES DE RETORNO -3 0 12 1387 PISOS 0 0 2 1387 BARANDA 3 0 -2 1387 FALDÓN 0 0 0			1	0	-1
1386 MATERIAL -51 0 108 1386 PASARELA 15 -1 -5 1386 MOVIMIENTO RÍTMICO 131 0 -39 1386 WY 101 -32 -35 1386 EX -773 0 185 1387 DESCARGA 411 -6 -131 1387 POLINES DE CARGA -78 0 221 1387 POLINES DE CARGA -14 0 65 1387 PISOS 0 0 2 1387 BARANDA 3 0 -2 1387 FALDÓN 0 0 0			1	0	-1
1386 PASARELA 15 -1 -5 1386 MOVIMIENTO RÍTMICO 131 0 -39 1386 WY 101 -32 -35 1386 EX -773 0 185 1387 DESCARGA 411 -6 -131 1387 POLINES DE CARGA -78 0 221 1387 POLINES DE CARGA -14 0 65 1387 PISOS 0 0 2 1387 BARANDA 3 0 -2 1387 FALDÓN 0 0 0			-51	0	108
1386 WY 101 -32 -35 1386 EX -773 0 185 1386 EY 411 -6 -131 1387 DESCARGA -78 0 221 1387 POLINES DE CARGA -14 0 65 1387 POLINES DE RETORNO -3 0 12 1387 PISOS 0 0 2 1387 BARANDA 3 0 -2 1387 FALDÓN 0 0 0			15	-1	-5
1386 WY 101 -32 -35 1386 EX -773 0 185 1386 EY 411 -6 -131 1387 DESCARGA -78 0 221 1387 POLINES DE CARGA -14 0 65 1387 POLINES DE RETORNO -3 0 12 1387 PISOS 0 0 2 1387 BARANDA 3 0 -2 1387 FALDÓN 0 0 0				0	
1386 EX -773 0 185 1386 EY 411 -6 -131 1387 DESCARGA -78 0 221 1387 POLINES DE CARGA -14 0 65 1387 POLINES DE RETORNO -3 0 12 1387 PISOS 0 0 2 1387 BARANDA 3 0 -2 1387 FALDÓN 0 0 0				-32	
1386 EY 411 -6 -131 1387 DESCARGA -78 0 221 1387 POLINES DE CARGA -14 0 65 1387 POLINES DE RETORNO -3 0 12 1387 PISOS 0 0 2 1387 BARANDA 3 0 -2 1387 FALDÓN 0 0 0				0	
1387 DESCARGA -78 0 221 1387 POLINES DE CARGA -14 0 65 1387 POLINES DE RETORNO -3 0 12 1387 PISOS 0 0 2 1387 BARANDA 3 0 -2 1387 FALDÓN 0 0 0				-6	
1387 POLINES DE CARGA -14 0 65 1387 POLINES DE RETORNO -3 0 12 1387 PISOS 0 0 2 1387 BARANDA 3 0 -2 1387 FALDÓN 0 0 0					
1387 POLINES DE RETORNO -3 0 12 1387 PISOS 0 0 2 1387 BARANDA 3 0 -2 1387 FALDÓN 0 0 0				0	
1387 PISOS 0 0 2 1387 BARANDA 3 0 -2 1387 FALDÓN 0 0 0			-3	0	
1387 BARANDA 3 0 -2 1387 FALDÓN 0 0				-	
1387 FALDÓN 0 0				+	
			ł	0	
			-1	0	-1

1387	POLEA DE CABEZA	0	0	-1
	CONTRAPESO	-22	0	39
	BANDA	-5	0	23
	POLEAS DEFLECTORAS	0	0	0
	POLINES DE IMPACTO	0	0	0
	MATERIAL	-29	0	134
	PASARELA	0	0	8
	MOVIMIENTO RÍTMICO	6	0	42
1387		5	7	43
1387		-102	0	-186
1387		50	-1	107
	DESCARGA	0	-73	1 155
	POLINES DE CARGA	0	-10	186
	POLINES DE RETORNO	0	-2	35
	PISOS	0	-11	-195
	BARANDA	0	-5	-170
	FALDÓN	0	0	0
	POLEA MOTRIZ	0	0	7
	POLEA MOTRIZ POLEA DE CABEZA	0	-1	11
	CONTRAPESO	0	0	-2
	BANDA		-4	-2 68
		0	0	-5
	POLEAS DEFLECTORAS POLINES DE IMPACTO	_	0	
		0	-	0
	MATERIAL	0	-22	392
	PASARELA	0	-47	-811
	MOVIMIENTO RÍTMICO	0	-2	32
1676		0	-115	1 271
1676		0	-4	66
1676		0	-607	6 499
	DESCARGA	0	-74	1 166
	POLINES DE CARGA	0	-11	193
	POLINES DE RETORNO	0	-2	36
	PISOS	0	-13	-192
	BARANDA	0	-6	-169
	FALDÓN	0	0	0
	POLEA MOTRIZ	0	0	-1
	POLEA DE CABEZA	0	0	-2
	CONTRAPESO	0	0	0
	BANDA	0	-4	70
	POLEAS DEFLECTORAS	0	0	0
	POLINES DE IMPACTO	0	0	0
	MATERIAL	0	-22	400
	PASARELA	0	-54	-797
	MOVIMIENTO RÍTMICO	0	0	-2
1677		0	-109	1 208
1677		0	-1	10
1677	EY	0	-582	6 242
1678	DESCARGA	0	-74	1 158
1678	POLINES DE CARGA	0	-11	192

1678 POLINES DE RETORNO	0	-2	36
1678 PISOS	0	-13	-197
1678 BARANDA	0	-6	-172
1678 FALDÓN	0	0	0
1678 POLEA MOTRIZ	0	0	0
1678 POLEA DE CABEZA	0	0	0
1678 CONTRAPESO	0	1	-8
1678 BANDA	0	-4	69
1678 POLEAS DEFLECTORAS	0	0	0
1678 POLINES DE IMPACTO	0	0	0
1678 MATERIAL	0	-22	398
1678 PASARELA	0	-53	-819
1678 MOVIMIENTO RÍTMICO	0	1	-10
1678 WY	0	-76	866
1678 EX	0	-1	23
1678 EY	0	-445	4 787
1679 DESCARGA	0	-78	1 234
1679 POLINES DE CARGA	0	-11	203
1679 POLINES DE RETORNO	0	-2	38
1679 PISOS	0	-12	-177
1679 BARANDA	0	-6	-161
1679 FALDÓN	0	0	0
1679 POLEA MOTRIZ	0	0	0
1679 POLEA DE CABEZA	0	0	0
1679 CONTRAPESO	0	-3	44
1679 BANDA	0	-4	73
1679 POLEAS DEFLECTORAS	0	0	0
1679 POLINES DE IMPACTO	0	0	0
1679 MATERIAL	0	-24	421
1679 PASARELA	0	-52	-737
1679 MOVIMIENTO RÍTMICO	0	-2	21
1679 WY	0	-223	2 380
1679 EX	0	10	-158
1679 EY	0	-1086	11 437

TABLA 7. COSTOS

COM	PONENTES			
ITEM	DESCRIPCION	CANTIDAD	P.U.(\$)	P.T.(\$)
1	VIGAS H 40"X20"X15M	2	2000	2400
2	VIGAS C 12"X8"X6M	20	6000	120000
3	VIGAS C 6"X4"X1M	40	2000	80000
3	NEUMATICOS R22	12	4880	58560
4	MUELLES	18	5000	90000
5	TUBOS DIA30"X6M	2	1550	3100
6	VIGAS 6"X4"X4M	4	500	2000
7	FAJAS 24"X500M	1	20000	20000
8	ANGULOS 6"X6"X6M	6	600	3600
9	EJES MACISO DIA 15X12M	3	300	900
10	TUERCAS 3/4"	60	700	42000
11	TUERCAS 5/8"	100	1000	100000
12	TUERCAS 1/2"	600	2000	1200000
13	PLATINAS 4"X0,4"	10	300	3000
14	PLANCHAS 1/8"	4	240	960
15	MALLAS	4	400	1600
16	MOTO REDUCTOR NW80 100HPS	2	5000	10000
17	MOTO REDUCTOR NW80 200HPS	4	10000	40000
18	MOTO REDUCTOR NW96 200HPS	2	2000	4000
19	GENERADOR	1	20000	20000
	I	<u>I</u>	sumatoria(\$)	1802120

2.5. Definición de términos básicos

AISI Instituto Americano del Hierro y el Acero.

ASTMSociedad Americana de Ensayo de Materiales.

AWS Sociedad Americana de la Soldadura.

Acero Aleación de hierro 98% más carbono 2%.

Alotropía Se denomina a la propiedad que poseen determinados metales de presentarse bajo estructuras metalográficas diferentes en el estado sólido.

Austenita Es la forma estable del hierro puro a temperaturas que oscilan entre los 900 a1400°C. Está formada por una disolución solida del carbono en el hierro, lo que supone un porcentaje máximo de C del 2,11%. Es dúctil, blanda y tenaz.

Carbono Elemento químico sólido y no metálico, símbolo C, número atómico 6.

Cementita Es un constituyente de los aceros, y otras aleaciones férreas como las fundiciones blancas, que aparece cuando el enfriamiento de la aleación níquel diagrama meta estable F-Fe₃C en vez de seguir el diagrama estable hierro- grafito. La cementita tiene un 6,67% en peso de carbono, y es un compuesto intermetálico de inserción. La composición química de la cementita es Fe₃C y la estructura cristalina es del tipo ortorrómbico

Elasticidad Capacidad de los metales para recuperar su forma y tamaño inicial después de retirar las fuerzas que provocan una deformación elástica.

Compuesto intermetálico de inserción. La composición química de la cementita es Fe₃C y la estructura cristalina es del tipo ortorrómbica.

Fusión Procedimiento de unión por aplicación de calor, presión, o una combinación de ambos, con o sin aporte de otro.

Hierro Metal de color gris que es encuentra en la corteza terrestre o en la Litosfera en un % de 5.06%.

Martensita Es el principal constituyente de los aceros templados, está conformado por una solución sólida sobresaturada de carbono o carburo de hierro en ferrita y se obtiene por enfriamiento rápido de los aceros desde su estado austénitico a altas temperaturas. Sus propiedades físicas varían según su contenido en carbono hasta un máximo de 0.7%. Es muy frágil y presenta un aspecto acicular formando grupos en zigzag con ángulos de 60 grados.

Resistencia Definida como la capacidad de un material para aguantar una carga aplicada.

SAE Sociedad Americana de Ingenieros Automotor

Torsión Deformación de un eje, producto de la acción de dos fuerzas paralelas con direcciones contrarias en sus extremos.

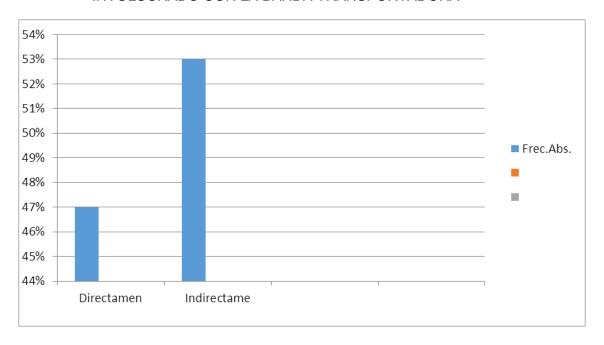

CAPÍTULO III PRESENTACIÓN, ANÁLISIS E INTERPRETACIÓN DE RESULTADOS 3.1. Tablas y gráficas estadísticas

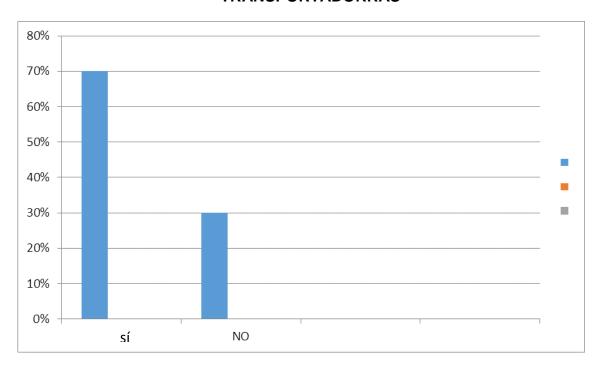
TABLA 8 DISTRIBUCIÓN DEL DESARROLLO DE SU TRABAJO ESTÁ INVOLUCRADO CON LA BANDA TRANSPORTADORA

	Frec. Absoluta	Frec. Relativa	Frec. Porcentual
Directamente	40	0.47	47%
Indirectamente	45	0.53	53%
Total	85	1.00	100%

GRÁFICO 1. DISTRIBUCIÓN DEL DESARROLLO DE SU TRABAJO ESTÁ

INVOLUCRADO CON LA BANDA TRANSPORTADORA

Fuente: Elaboración propia

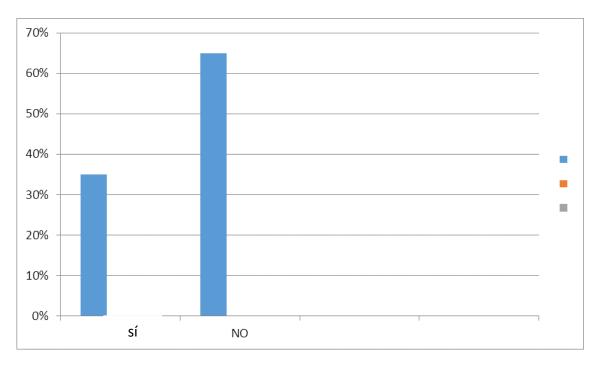

ANÁLISIS E INTERPRETACIÓN

Del total de encuestados, se observa que el 47% trabaja directamente involucrado con bandas transportadoras; mientras que el 53%, indirectamente.

TABLA 8. CONOCE LA IMPORTANCIA DE LOS EQUIPOS DE BANDAS TRANSPORTADORAS

	Frec. Absoluta	Frec. Relativa	Frec. Porcentual
Sí	60	0.70	70
NO	25	0.30	30
TOTAL	85	1.00	100%

GRÁFICO 2. CONOCE LA IMPORTANCIA DE LOS EQUIPOS DE BANDAS TRANSPORTADORRAS

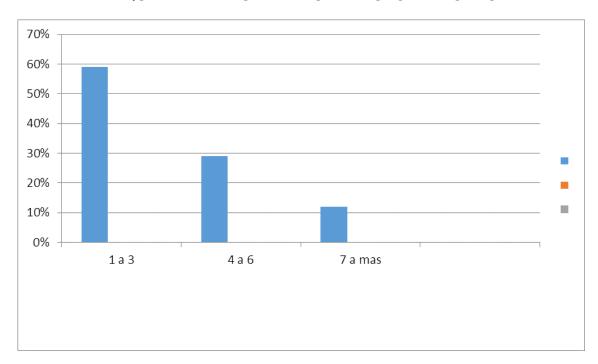

ANÁLISIS E INTERPRETACIÓN

Del total de encuestados, se observa que el 70% conoce la importancia de los equipos de bandas transportadoras; mientras que el 30%, no conoce.

TABLA 9. SABE SI ACTUALMENTE EXISTE UN PROGRAMA DE AMPLIACIÓN DE BANDAS TRANSPORTADORAS

	Frec. Absoluta	Frec. Relativa	Frec. Porcentual
Sí	30	0.35	35
NO	55	0.65	65
TOTAL	85	1.00	100%

GRÁFICO 3. DISTRIBUCIÓN DE SI SABE ACTUALMENTE QUE EXISTE UN PROGRAMA DE AMPLIACIÓN DE BANDAS TRANSPORTADORAS

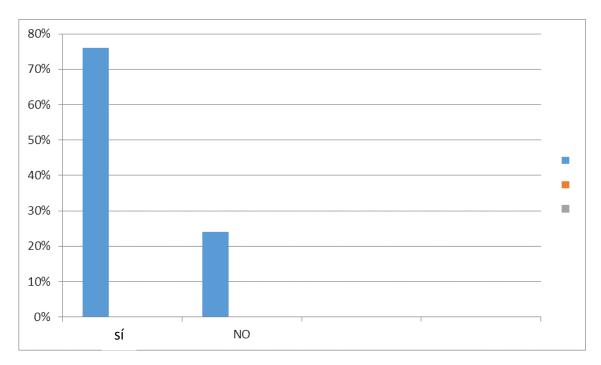

ANÁLISIS E INTERPRETACIÓN

Del total de encuestados, se observa que el 35% sabe que actualmente existe un programa de ampliación para las bandas transportadoras; mientras que el 65%, no sabe.

Tabla 9. CONOCIMIENTO DE LAS VECES QUE FALLA LAS BANDAS TRANSPORTADORAS

Las veces que falla	Frec. Absoluta	Frec. Relativa	Frec. Porcentual
1 a 3	50	0.59	59
4- 6	25	0.29	29
7 a más	10	0.12	12
TOTAL	85	1.00	100%

GRÁFICO 4.DISTRIBUCIÓN SOBRE EL CONOCIMIENTO DE LAS VECES QUE FALLA LAS BANDAS TRANSPORTADORAS

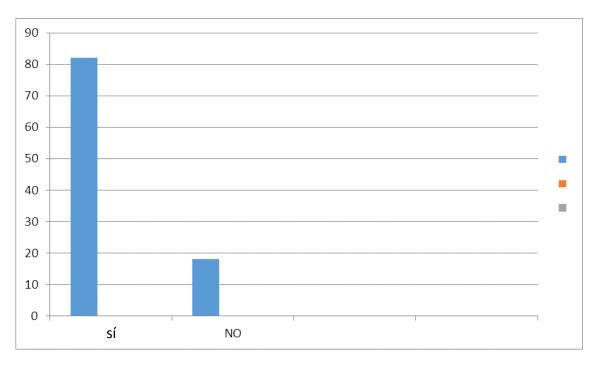

ANÁLISIS E INTERPRETACIÓN

Del total de encuestados, se observa que el 59% tiene conocimiento de 1 a 3 fallas en las bandas transportadoras; el 29% tiene conocimiento de 4 a 6 fallas; mientras que el 12% tiene conocimiento de 7 a más fallas en las bandas transportadoras.

TABLA 10. CONSIDERA NECESARIO AMPLIAR LAS FAJAS TRANSPORTADORAS

AMPLIAR FAJAS	Frec. Absoluta	Frec. Relativa	Frec. Porcentual
Sí	65	0.76	76
NO	20	0.24	24
TOTAÑL	85	1.00	100%

GRÁFICO 5. DISTRIBUCIÓN DE SI CONSIDERA NECESARIO AMPLIAR LAS BANDAS TRANSPORTADORAS

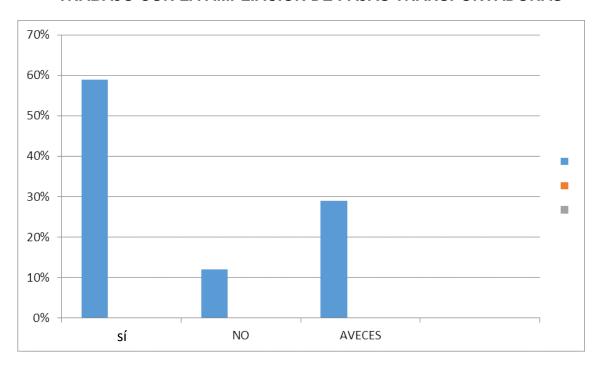

ANÁLISIS E INTERPRETACIÓN

Del total de encuestados se observa que el 76% considera necesario ampliar las bandas transportadoras, mientras que el 24% no lo considera necesario ampliar.

TABLA 11. LA AMPLIACIÓN DE FAJAS MEJORARA LA PRODUCCIÓN

MEJORAR LA PRODUCCIÓN	Frec. Absoluta	Frec. Relativa	Frec. Porcentual
Sí	70	0.82	82%
NO	15	0.18	18%
TOTAL	85	1.00	100%

GRÁFICO 6.DISTRIBUCIÓN DE SI MEJORARÉ LA PRODUCCIÓN CON LA AMPLIACIÓN DE FAJAS TRANSPORTADORAS

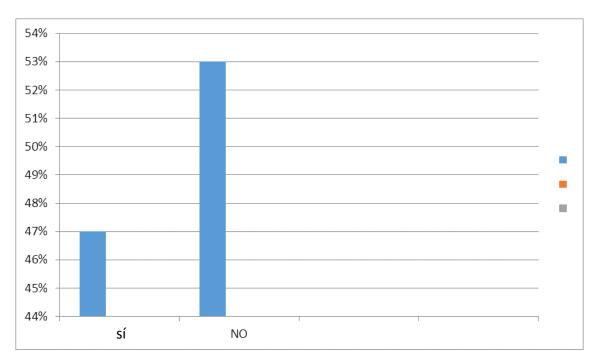

ANÁLISIS E INTERPRETACIÓN

Del total de encuestados, se observa que el 82% cree que mejorará la producción con la ampliación de fajas transportadoras; mientras que el 18%, no cree.

TABLA 12. MEJORA DE LA EFICIENCIA EN SU TRABAJO CON LA AMPLIACIÓN DE FAJAS TRANSPORTADORAS

MEJORAR LA EFICIENCIA	Frec. Absoluta	Frec. Relativa	Frec. Porcentual
Sí	50	0.59	59
NO	10	0.12	12
A VECES	25	0.29	29
TOTAL	85	1.00	100%

GRÁFICO 7.DISTRIBUCIÓN DE MEJORA DE LA EFICIENCIA EN SU TRABAJO CON LA AMPLIACIÓN DE FAJAS TRANSPORTADORAS

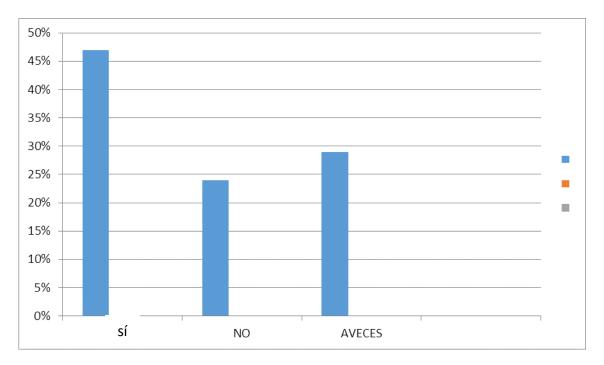

ANÁLISIS E INTERPRETACIÓN

Del total de encuestados, se observa que el 59% opina que mejorara la eficiencia en su trabajo; el 12% opina que no mejorará; mientras que el 29% dice que a veces mejorará.

TABLA 13. CONOCE LOS PROCEDIMIENTOS DE REVISIÓN DE LAS BANDAS TRANSPORTADORAS

PROCEDIMIENTOS DE REVISIÓN	Frec. Absoluta	Frec. Relativa	Frec. Porcentual
Sí	40	0.47	47
NO	45	0.53	53
TOTAL	85	1.00	100%

GRÁFICO 8. DISTRIBUCIÓN DE CONOCER LOS PROCEDIMIENTOS DE REVISIÓN DE LAS BANDAS TRANSPORTADORAS

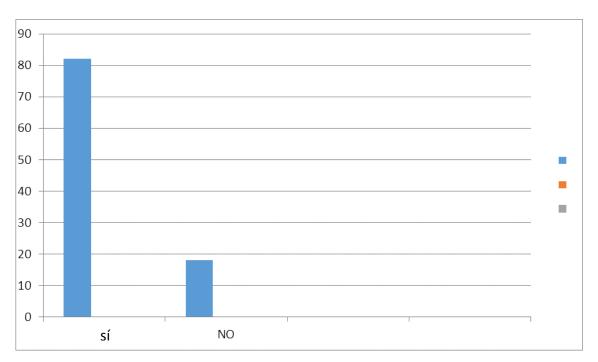

ANÁLISIS E INTERPRETACIÓN

Del total de encuestados, se observa que el 47% conoce los procedimientos de revisión periódica de las bandas transportadoras; mientras que el 53% no conoce los procedimientos de revisión periódica.

TABLA 14. ANTE UNA FALLA CUENTA CON LAS HERRAMIENTAS PARA EL SERVICIO EN LAS FAJAS TRANSPORTADORAS

FALLA	Frec. Absoluta	Frec. Relativa	Frec. Porcentual
Sí	40	0.47	47
NO	20	0.24	24
A VECES	25	0.29	29
TOTAL	85	1.00	100

GRÁFICO 9. DISTRIBUCIÓN DE ANTE UNA FALLA SI CUENTA CON LAS HERRAMIENTAS PARA EL SERVICIO EN LAS FAJAS TRANSPORTADORAS


ANÁLISIS E INTERPRETACIÓN

Del total de encuestados, se observa que el 47% de los trabajadores sì cuenta con las herramientas ante una falla en las bandas transportadoras; el 24% no cuenta; mientras que el 29% a veces cuenta con las herramientas ante una falla en las bandas transportadoras.

TABLA 15.LA EMPRESA TIENE LA CAPACIDAD E INFRAESTRUCTURA PARA LA AMPLIACIÓN DE FAJAS TRANSPORTADORAS

CAPACIDAD E	Frec. Absoluta	Frec. Relativa	Frec. Porcentual
INFRAESTRUCTURA			
Sí	70	0.82	82
NO	15	0.18	18
TOTAL	85	1.00	100%

GRÁFICO 10.DISTRIBUCIÓN DE LA CAPACIDAD E INFRAESTRUCTURA PARA LA AMPLIACIÓN DE LAS FAJAS TRANSPORTADORAS

Fuente: Elaboración propia

ANÁLISIS E INTERPRETACIÓN

Del total de encuestados se puede observar que el 82% dice sì considera que la empresa tiene la capacidad e infraestructura para solucionar la ampliación de bandas; mientras que 18% opina que no.

3.2. CONTRASTACIÓN DE HIPÓTESIS

3.2.1. Contrastación de la Ho1

HE1. La ampliación de fajas transportadoras en la empresa de cemento Yura S.A. es necesaria.

Ho1. No es necesaria la ampliación de fajas transportadoras en la empresa de cemento Yura S.A.

Según la encuesta de campo pregunta 1 de la variable dependiente se tiene la siguiente tabla de correlación:

TABLA 16. FRECUENCIA OBSERVADA

TRABAJADORES	AMPLIACIÓN DE FAJAS TRANSPORTADORAS (FO)		TOTAL
	Sí	NO	
HOMBRES	51	21	72
MUJER	9	4	13
TOTAL	60	25	85

TABLA 17. FRECUENCIA ESPERADA

TRABAJADORES	AMPLIACIÓN DE FAJAS TRANSPORTADORAS (FE)		TOTAL
	Sí	NO	
HOMBRES	50.82	21.18	72
MUJER	9.18	3.82	13
TOTAL	60	25	85

Fuente: Elaboración Propia

TABLA 18.CÁLCULO DE X² (CHI-CUADRADO)

RELACIÓN	Fo	Fe	(Fo-Fe) ² / Fe
HSI	51	50.82	0.00064
MSI	9	9.18	0.00353
HNO	21	21.18	0.00153
MNO	4	3.82	0.00849
TOTAL	85	85	X ² =0.01419

Para aceptar o rechazar la hipótesis nula, se propone un nivel de significación del 5% (0.05) y g.l. = 1

Como la X² (calculada) es menor que la X² (tabla), luego se acepta la Ho1.

0.01419 < 3.84

3.2.2. Contrastación de la hipótesis Ho2

HE2. El transporte de agregados en la empresa de cemento Yura S.A.

debe precisarse significativamente.

Ho2. No debe precisarse significativamente el transporte de agregados.

Según la encuesta de campo pregunta 2 de la variable dependiente se tiene la siguiente tabla de correlación:

Tabla 19. FRECUENCIA OBSERVADA

TRABA-	TRANSPORTE DE AGREGADOS				
JADORES	MALO	REGULAR	BUENO	MUY MALO	TOTAL
HOMBRE	17	35	11	9	72
MUJER	3	5	4	1	13
TOTAL	20	40	15	10	85

Tabla 20.FRECUENCIA ESPERADA

TRABA-	TRANSPORTE DE AGREGADOS				
JADORES	MALO	REGULAR	BUENO	MUY MALO	TOTAL
HOMBRE	16.94	33.88	12.71	8.47	72
MUJER	3.06	6.12	2.71	1.53	13
TOTAL	20	40	15	10	85

TABLA 21. CÁLCULO DE LA X²

RELACIÓN	Fo	Fe	(Fo-Fe) ² / Fe
НМ	17	16.94	0.000213
MM	3	3.06	0.000118
HR	35	33.88	0.037025
MR	5	6.12	0.204967
НВ	11	12.71	0.230063
MB	4	2.71	0.614006
НМВ	9	8.47	0.033164
MMB	1	1.53	0.183595
TOTAL	85	85	X ² =1.303151

Fuente: Elaboración propia

Para aceptar o rechazar la hipótesis nula, se propone un nivel de significación del 5% (0.05) y g.l. = 3

Como la X^2 (calculada) es menor que la X^2 (tabla), luego se acepta la Ho1.

1.303151 < 7.82

CONCLUSIONES

PRIMERA: Como la X^2 (calculada) es menor que la X^2 (0.01419 < 3.84), se acepta la Ho con un 5% nivel de significación y g.l.= 1; se rechaza la hipótesis alterna que significa que es necesaria la ampliación de fajas transportadoras en la empresa de cemento Yura S.A.

SEGUNDA: Como la X^2 (calculada) es menor que la X^2 (1.303151 < 7.82), se acepta la Ho con un 5% nivel de significación y g.l. = 3; se rechaza la hipótesis alterna que significa que no debe precisarse significativamente el transporte de agregados lo que implica que se debe precisar el transporte de agregados para realizar la ampliación de fajas transportadoras.

TERCERA: Como la empresa Yura S.A. inicia un proyecto ambicioso que aproximadamente duplicará de 1 900 a 4 200 Tm diarias y en el sur crece la demanda en promedio del 12% a 15% cada año; entonces es factible la ampliación de fajas transportadoras para cumplir con los objetivos de superar la producción de cuatrocientos millones de toneladas anuales.

RECOMENDACIONES

PRIMERA: Debe contratarse a una empresa calificada para que realice la ampliación de fajas transportadoras.

SEGUNDA: realizar los cálculos con precisión y exactitud en el diseño de las fajas, teniendo en cuenta los parámetros correspondientes.

TERCERA: El presente estudio de investigación permite otros profesionales o investigadores puedan ampliar y/o mejorar.

FUENTES DE INFORMACIÓN

Álvarez Martínez, M. A. (1989). El diseño de plantas móviles. Madrid: Arcos.

Ariza, Manuel.(1998). Cálculo de vigas de ranflas. Madrid: Arcos.

Del Carmen Aguilar, B. A. y Gallardo E. (2010). Del Instituto Politécnico Nacional. Escuela Superior de Ing. Mecánica y Eléctrica. México.

Manual de Ingeniería de las Bandas Transportadoras. Intralux.

Manual de Standard ANSI / CEMA BIOT. 1-203.

López, R. A. Cintas transportadoras. 1ra. Edición.

Saravia Gallardo, M. (2006). Metodología de la investigación.

Shigley, Joseph. (2002). Diseño en ingeniería mecánica. 6ta Edición.

http://www.buenatarea.com/ensayos/fajas-transportadoras180706htlm

MATRIZ DE CONSISTENCIA

TÍTULO: Ampliación de fajas transportadoras y transporte de agregado en la Empresa de Cemento Yura S.A., Arequipa 2015.

PROBLEMA	OBJETIVOS	HIPÓTESIS	VARIABLES E INDICADORES	METODOLOGÍA	TECN/INSTRU
	OBJETIVO GENERAL	HIPOTESIS GENERAL El transporte de agregados se debe		TIPO_DE INVESTIGACIÒN	
PROBLEMA GENERAL	Determinar la relación entre la ampliación de	al diseño de la planta móvil.		Por el Ámbito es de Campo de tipo	
¿Cómo se relaciona la	fajas transportadoras y transporte de	Es probable que la ampliación de fajas transportadoras influya	VARIABLE	No experimental	
ampliación de fajas y el transporte de agregados en la Empresa de Cemento	agregados en la Empresa de Cemento Yura S. A. , Arequipa	significativamente en el transporte de agregados en la Empresa de Cemento Yura S.A.,	INDEPENDIENTE	NIVEL_DE INVESTIGACIÒN	TÉCNICA
Yura S. A., Arequipa 2015?	2015? OBJETIVOS ESPECIFICOS:	Arequipa 2015. HIPOTESIS	Fajas transportadoras	Correlacionar de	Encuesta Y
PROBLEMAS ESPECIFICOS:	OE1. Establecer	ESPECÍFICAS HE1. La ampliación de fajas transportadoras en la Empresa de Cemento		tipo Transversal DISEÑO DE LA	Encuesta modelamiento
PE1 ¿Qué es la	la ampliación de las fajas transportadoras en la empresa	Yura S.A. es necesaria. Ho1. No es necesaria la ampliación de fajas	VARIABLE	INVESTIGACIÒN	INSTRUMENTO
ampliación de fajas transportadoras en la Empresa de Cemento Yura S.A.?	de cemento Yura.	transportadoras en la Empresa de Cemento Yura S.A.	DEPENDIENTE	Transversal	Cuestionario
PE2¿Cuàl es	OE2. Precisar y modificar el transporte de	HE2. El transporte de agregados en la Empresa de Cemento Yura S.A.	Transporte de agregado	UNIVERSO	y Prototipo del Diseño
transporte de agregados en la empresa de cemento Yura?	agregados en la empresa de cemento Yura.	Debe precisarse significativamente.		El prototipo de fajas transportadoras	
		Ho2. No debe precisarse significativamente el transporte de		MUESTRA	
		agregados.		Es el mismo del Universo.	

ENCUESTA

La encuesta es anonima. Marque con un aspa cada una de las preguntas.
¿El desarrollo de su trabajo está involucrado con las bandas transportadoras?
Directamente
Indirectamente
¿Conoce la importancia de los equipos de bandas transportadoras dentro de la empresa?
Sí
NO
¿Sabe si actualmente existe un programa de ampliación para las bandas transportadoras?
Sí
NO
¿Cuántas veces al mes tiene conocimiento de un fallo en las bandas transportadoras?
1 a 3
4 a 6
6 a más
¿Considera necesaria la ampliación para las bandas transportadoras?
Sí
NO
¿Cree que mejoraría la producción con la ampliación?
Sí
NO
¿Mejoraría la eficiencia en su trabajo con la ampliación de las transportadoras?
Sí
NO

¿Conoce los procedimientos de revisión periódica a las bandas transportadoras?
Sí
NO
¿Cuándo se presenta una falla, servicio programado en las bandas transportadoras, cuenta con las herramientas para resolver la tarea?
Sí
NO
¿Considera que la empresa tiene la capacidad e infraestructura para solucionar la ampliación de las bandas transportadoras?
Sí
NO
GRACIAS.

ENCUESTA DE CAMPO

La encuesta es anónima, se le sugiere responder con sinceridad.
1 ¿Considera Ud. necesario e importante ampliar las FAJAS TRANSPORTADORAS?
Sí NO
2 ¿El transporte de Agregado es?
MALO
REGULAR
BUENO
MUY BUENO
GRACIAS.

FABRICACION Y SUMINISTRO DE

FAJAS TRANSPORTADORAS

MEMORIA DE CALCULOS ESTRUCTURA METÁLICA FAJA TRANSPORTADORA DE BULTOS-PROYECTO MISTI 1.0 ALCANCES

La presente memoria de cálculo corresponde al análisis y diseño de las estructuras de conexiones correspondientes a la estructura de la faja transportadora de bultos que forma parte del proyecto "MISTI" ,elaborada por la Empresa YURA S.A

El análisis se efectuará usando como herramienta el programa SAP 2000 y el diseño de las estructuras se realizará de acuerdo a lo indicado en la Normas Técnicas de Edificaciones, en lo que sea aplicable e incluyendo las siguientes normas:

- NTE-E-020 Norma de cargas.
- NTE-E-030 Norma de diseño sismo-

- Poleas de contrapeso + Contrapeso =

- NTE-E-090 Norma de estructuras

2.0 METRADO DE CARGAS PARA ESTRUCTURA DE LA FAJA

Las cargas a aplicar sobre la estructura serán de acuerdo a los arreglos mecánicos y por el cliente y que se resume a

ESTRUCTURA DE FAJA, POLEA DE COLA Y CABEZA

Cargas muertas (D):

El peso propio de los elementos modelados será incluido como una propiedad del programa de análisis.

46

1700

kg/m²

Kq

Sobre las pasarelas:

- PISOS =

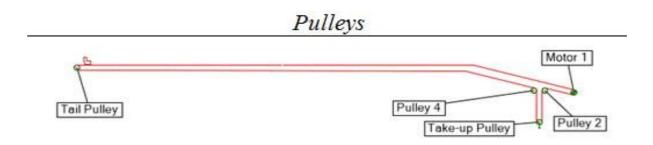
- Baranda =	18	kg/m
Sobre la celosía:		
 Polines de carga = Polines de retorno = Polines de impacto = Correa o banda = Faldón = 	15 15 15 27 75	kg x unidad kg x unidad kg x unidad kg/m kg/m
Sobre las estructuras de faja exister	nte:	
 Polea Motor o de cola = Polea Cabeza = Peso polea deflectora = Sobre las estructuras de faja nueva: 	156 156 100	kg kg Ka x unidad
- Polea Motor o de cola = - Polea Cabeza =	156 156	kg ka
- Fulta Gabeza =	150	kg

FAJAS TRANSPORTADORAS

Sobre carga las pasarelas :

- S/c en pasarelas = 153 kg/m

Sobre la celosía (MAT):


- Mineral transportado = 66.2 kg/m

Tensiones en faia existente:

Tensiones máximas en operación (MOVIMIENTO RÍTMICO)

Teniendo reaccio	ones de las fue	rzas								
Poleas *		Vector del	Vector	eje y maza		s (Kn) FL-N Caso	Estructura Máxima de		kN) FL-N Caso	ciones Estructura Máxima de Tensión
Motor 1 Polea 2	180 35	190 10	190 225	99	-9.57 0.52		-20.7	-2.66 -3.40	-3.44	-4.62 -3.98
Comenzai correa	180	45	45	70	6.98	7.89	9.17	6.29	7.20	8.48
Polea 4	139	225	184	108	-9,06	-10,8	-13,9	-5,19	-5.83	-6.95
Polea de cola	174	4	10	74	11.0	13.6	18,9	0.70	1.03	1.74

Tensiones en faja nueva.

FAJAS TRANSPORTADORAS

Tensiones máximas en operación (MOVIMIENTO RÍTMICO)

Teniendo	reaccion	nes de l	as fuer	zas						
Poleas *		Vector	Vector del	eje y maza		s (Kn) FL-N Caso	Estructura Máxima de	Teniendo verticals (Estructura Mínima de Tensión	(kN) FL-N Caso	ciones Estructura Máxima de Tensión
Motor 1	180	165	165	130	0.00	-15.3	0.00	0.00	2.82	0.00
Polea 2	105	345	270	82	0.00	6.64	0.00	0.00	-9.85	0.00
Comenzar correa	180	90	90	70	0.00	0.00	0.00	0.00	13.3	0.00
Polea 4	75	270	165	82	0.00	-8.14	0.00	0.00	-6.56	0.00
Polea de cola	180	360	0	114	0.00	18.9	0.00	0.00	-1.15	0.00

Carga de viento (W):

Se tomará en cuenta el estado de carga para la fuerza de viento transversal a la celosía (Wy). Velocidad básica del viento:

V= 75 km/h (Hasta una altura de 10m)

 $P = 28.1 \text{ kg/m}^2$

Coeficiente de exposición total = 1.4

Por lo que la presión a aplicar sobre la estructura será: W= 39.4 kg/m²

- Carga de viento sobre la estructura (FAJA)

Se aplicará una fuerza uniformemente repartida en los elementos estructurales expuestos a viento en cada dirección usando como carga total sobre el ducto Ww= 39.4 kg/m² Se consideran las siguientes dimensiones expuestas para los elementos estructurales.

Bridas: h= 76.2 mm _____

Columnas h= 203.2mm _____

Dónde:

Wwy= 3.0 Kg/m. (En bridas)

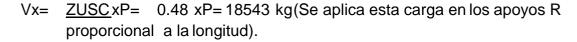
Wwy= 8.0 Kg/m (En columnas)

Carga de sismo (E): En la Estructura:

Peso contribuyente al sismo:P = 38631kg (Sap)

Cálculo de la fuerza sísmica

Dirección longitudinal a la faja

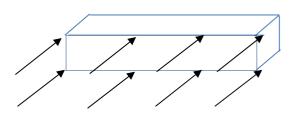

Z = 0.4

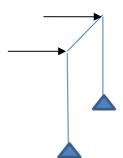
U=1

S=1.2, Tp=0.6

C = 2.5

R=2.5 (Estimado para estructura de 01 grado de libertad)


Dirección perpendicular a la faja:


Coeficientes sísmicos: Z= 0.4

U=1

S = 1.2, Tp = 0.6

C = 2.5

R=6 (Soportes arriostrados)

En la estación motriz:

Peso contribuyente al sismo:P = 1560 kg

FAJAS TRANSPORTADORAS

Cálculo de la fuerza sísmica:

Dirección longitudinal a la faja:

Coeficientes sísmicos:

Dirección perpendicular a la faja:

Coeficientes sísmicos:

COMBINACIONES DE CARGA

Para el diseño de las estructuras se emplearán las siguientes combinaciones de carga:

```
U1: 1.2D+1.6L+1.6MAT

U2: 1.2D+1.6L+1.6MAT+1.6MOVIMI

U3: 1.2D+0.5L+1.6MAT+0.8WY+1.6

U4: 1.2D+1.3WY+0.5L+MAT+MOVI

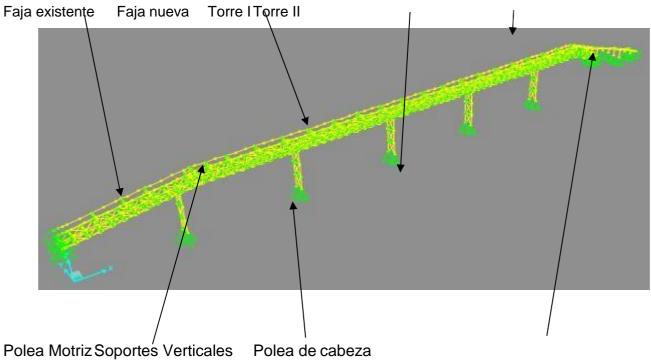
U5: 1.2D+0.5L+MAT+MOVIMIENTO

U5A: 1.2D+0.5L+MAT+MOVIMIENT

U6: 1.2D+0.5L+MAT+MOVIMIENTO

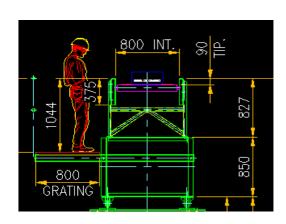
U7: 0.9D+1.3WY

U8: 0.9D+E


U8A: 0.9D-EX

U9: 0.9D+E
```

Para el cálculo de las deflexiones verticales se usará la siguiente combinación:


S1: D+%L+MAT+MOVIMIENTO

6.0 ANÁLISIS ESTRUCTURAL Modelo estructural

7.0 VERIFICACIÓN DE DEFLEXIONES

Sección típica:

FAJAS TRANSPORTADORAS

- Deflexión en la viga de celosía:

```
L1= 9.2 m (Tramo I)
```

Comb. S1

 $\Box v = 0.48$ cm => L/ 1917 << L/360 Ok!

Comb. S1

 $\Box v = 0.66$ cm => L/ 1818 << L/360 Ok!

L3= 12 m (Tramo III)

Comb. S1

 $\Box v = 0.76$ cm => L/ 1579 << L/360 Ok!

L4= 11.989 m (Tramo IV)

Comb. S1

 \Box v= 0.72 cm => L/ 1665 < L/360 Ok!

L3= 12 m (Tramo V)

Comb. S1

 $\Box v = 0.63$ cm => L/ 1905 << L/360 Ok!

L4= 12 m (Tramo VI)

Comb. S1

 $\Box v = 0.81$ cm => L/ 1481 < L/360 Ok!

- Deflexión en pasarela (volado) en tramo de Celosia

L= 0.8 m Comb. S1

 \Box v= 0.38 cm => L/ 211 < L/120 (en volados) Ok!

- Deflexión de vigas de pasarela

L=0.8 m

Comb. S1

 $\Box v = 0.38$ cm => L/ 211 < L/180 (en volados)

Desplazamientos por carga de sismo en soportes verticales

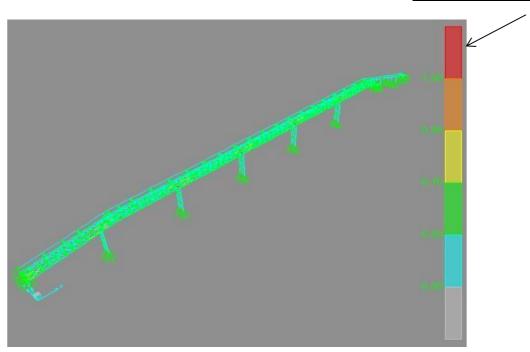
Sismo en dirección longitudinal a la estructura de faia (X-X)

□x= 0.13 cm

h= 4.93 m

 $0.75 \square xR/h = 0.05\% << 1.0\% Ok!$

Sismo en dirección transversal a la estructura de faja (Y-Y)


y = 0.2 cm h= 4.93 m

0.75 \(\text{vR/h} = \ 0.18\% << 1.0\% \ Ok! \)

DISEÑO DE LOS ELEMENTOS ESTRUCTURALES

-El diseño de los elementos estructurales se realizará con el programa SAP 2000, a muestran los ratios de demanda de capacidad de los elementos:

Sección Sobre esforzada

RATIOS DE DEMANDA DE CAPACIDAD DE LOS ELEMENTOS

Elementos utilizados:

Celosía:

Brida Superior:

L-3,5"x3,5"x1/4"

Brida Inferior:

L-3,5"x3,5"x1/4"

Montantes (verticales y horizontales):

L-2"x2"x3/16"

Diagonales:
L-2"x2"x1/4" (En tramo de faja existente) L-2"x2"x3/16"
Diagonales Horizontales: L-2"x2"x3/16" Pasarela:
C 6"x8.2 (Se originan desde las montantes de la celosía)
L-2"x2"x3/16" (Viga longitudinal de pasarela, donde se apoya el PISOS)
Soportes Verticales:
Columnas: W8x21
Puntales:
L-3"x3"x3/16"
Arriostres:
L-3"x3"x3/16"
Soportes o puntales verticales de celosía a estructura de faja:
Columnas: C-8x11.5

Listado de pesos aproximados según SAP: (*)

Elemento: Peso:

L-3,5"x3,5"x1/4" 4338.3 kg

L-3"x3"x3/16" 388.5 kg

L-2"x2"x3/16" 2139.6 kg

L-2"x2"x1/4" 135.8 kg

C 6"x8.2 1153.2 kg

W8x21 1521.2 kg

^{*} Son pesos referenciales.

9.0 DISEÑO DE CONEXIONES

Conexión de celosía a soporte vertical

Máxima acción en el apoyo.

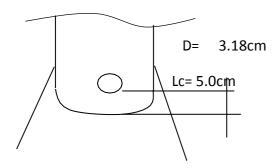
Pu= 7622.71 kg

Diseño de pin

Considerando Pin 1 " f SAE 1045

Acero al Carbón Steel. SAE 1045

Propiedad	Valor en unio	lades Métricas	Valor en unidades americanas		
Densidad	7.872 *10 ³	Kg/m³	491.4	Lb/ft ³	
Módulos de elasticidad	201	GPA	29100	Ksi	
Expansión térmica	11.7*10 ⁻⁶	0C ⁻¹	6.5*10 ⁻⁶	in/(in*: 0F)	
Capacidad de calor específica	486	J/(Kg*k)	0.116	BTU/(lb*0F)	
Conductividad térmica	50.9	W/(M*k)	353	BTU*in/(hr*ft² *OF)	
Resistividad eléctrica	1.62* 10-7	Ohm*m	1.62*10-5	Ohm*cm	
Inexistencia a la tracción (laminado en caliente	565	МРА	81900	Psi	
Limite elástico (laminado en caliente	310	MPA	45000	Psi	
Elongación (laminado en caliente)	16	%	16	%	
Dureza (laminado en caliente)	84	RB	84	RB	
Resistencia a la tracción (dibujado en frío)	625	MPA	90600	psi	
Limite elástico (dibujado en frío)	530	МРА	769 00	Psi	
Elongación (dibujado en frío)	12	%	12	%	
Dureza (dibujado en frío)	88	RB	88	RB	


Fu= 565 Mpa

Fu= 5763 kg/cm²

FAJAS TRANSPORTADORAS

TABLA		
Tensión Nominal de Conectores y Partes Rosea das. ktif cm¹ (M	IPa)	
Descripción del conector	Tensión do Tracción Nominal, fkgf/.cm² (MPA) (*)	Tensión de corte Nominal en conexiones de de Tipo Aplastamiento, F _m . kgf/cm² (MPa)
Pernos A3Q7	3.160 (31 d)^	1 .900 (1 S&)IDPI<>liai
Grupo A (Ejemplo. Peros A325), cuando la rosca no esta excluida en el plano de corte	0,320 (630)	3,000 (373) i"'
Grupo A (ej, Pernos A325), cuando la rosca		4,760 (JS9) ^b
Está excluida en el plano de corle		
Grupo B (ej. Pernos A490), cuando la rosca no está excluida en el plano de corte	7,950 <7SO)	4,700
Grupo B (ej. Pernos A490), cuando la rosca está excluida en el plano de corte	7,950 f78Q)	5,WO (579)'°'
partes roscadas que cumplen los requisitos	76F,,	O.JBOFj" ¹
de la Sección A3.4, cuando la rosca no está excluida en el plano de corte		
Partes roscadas que cumplen los requisitos de la	0.75F"	o, SBOFJ^
sección A34, cuándo la rosca está excluida en el plano de corte		
*) Para pernos de alta resistencia sujetos a fatiga por cargas de	tracción, ver anexo 3,	
*) Para conexiones en los extremos con un patrón de conectoro a un 83.3 % de los valores tabulados. La longitud del patrón de entre la línea central de los pernos que conectan dos partes co	conectores es la máxima distancia	
*) Para pernos A307 los valores tabulados deben ser reducidos	por el 1% para cada 2 mm / 5 dia	m. De longitud en el agarre.
*) Rosca permitida en los planos de corte		
Soporte		
Fnt= 0.5Fu= 2881.5kg/cm²(Esfuerzo	o nominal al corte)Re	esistencia al corte del
□Rn = □ Fnt(Ac) Según AISCJ3-1		
□= 0.75		
Ac= 10.14 cm² (Área de corte en este	e caso es 2A(□=11/4	! "))
□Rn= 21914kg>PuOK!		

Diseño de la cartela por aplastamiento

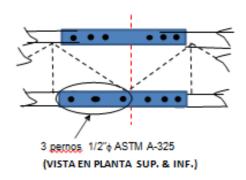
Suponemos plancha con espesor t= 1.91cm

Resistencia al aplastamiento del material conectado Ase

J7. Resistencia de aplastamiento

La resistencia de aplastamiento de diseño ${}^{\phi}R_{11}$ o la resistencia de aplastamiento disponible, $Rn\ \Omega$ de superficies en contacto debe ser determinada para el estado límite de aplastamiento (fluencia de comprensión local) como se muestra a continuación:

$$\phi = 0.75 (LRFD)$$
 $\Omega = 2.00 (ASD)$


La resistencia de aplastamiento nominal Rn, debe ser determinada de acuerdo con lo siguiente:

Para superficies terminadas, pasadores en perforaciones de borde, taladros o punzo nados y extremos de atiesadores de aplastamiento ajustado

$$Rn=1.8F_{y}A_{pb}$$

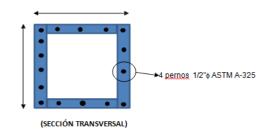
Dónde:
F_y = Tensión de fluencia mínima especificada, kgf/cm² (MPa)
A_{pb} =área proyectada de apoyo, cm ² (mm ²)
Soporte
Apb=Dxt=6.05cm ²
Luego:
Rn=27544kg
□Rn= 20658 kg >Pu
Usar: 01 PLANCHA3/4"yDOSDE3/8"
Diseño de Conexión en la Celosía
Verificación Por Corte Pernos
Vu = 6653kg (actuante)
Considerando pernos ASTM A-325
Fu =8436Kg/cm ²
Fnv =0.60*Fu=5062Kg/cm ²
□□ = 0.75(esfuerzo nominal al corte)
A =1.27 cm ²
Resistencia al corte del Perno
□Rn= 4821kg >Vu OK!
N° de pernos= 1.4
Usar: 3 pernos 1/2"□□ASTMA-325

FAJAS TRANSPORTADORAS

Diseño de Plancha Conectora

Considerando una plancha e=3/8"

 $Pu = \Box \Box F y Ag$


Pu=6653Kg(actuante)

Ag=3.825pulg²

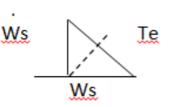
Se tiene:

Pu=379536Kg>>Pu(actuante)

Utilizar plancha de e =3/8"

Soldadura en la conexión (SOLDADURA DE FILETE)

Tracción perpendicular al área efectiva, para este tipo de conexiones.


Ws=0.48cm (espesor del ala del ángulo)

Te=0.67cm

(0,6Fexx)=2530.8 Kg/cm2

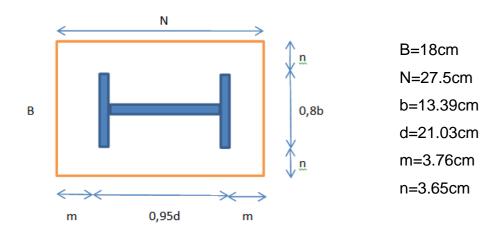
Longitud de soldadura de 16,4 cm. tenemos:

☐ Rn= 20966Kg>Ru=12413 Kg (soldadura)

FAJAS TRANSPORTADORAS

□Rn= 14762Kg>Ru=12413 Kg (material base)

La resistencia de la soldadura debe ser igual a la resistencia del material. Ahora, las cargas actuantes son menores a la resistente. Por lo que se concluye que la soldadura está cumpliendo los requerimientos de detracción.


De plancha base para columna w8x21

Se toma la carga axial última en la base de la sección:

Pu=7732kg

Pu'=16062 kg (50% del resistente)

Se calcula la resistencia para la sección de la plancha base:

Como el área de la plancha es menor que la superficie de concreto, entonces: Área de la sección del pedestal=2600cm2

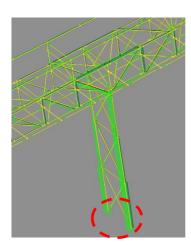
Pp= 270002 kg

Pp= 162001 kg >> Pu Ok!

FAJAS TRANSPORTADORAS

Cálculo del espesor de la plancha base

Mux= 5930 kg-cm Muy= 4129 kg-cm


 $\square Mn > Mu$

 \square Mnx= 0,9*(N*t^2/4)*Fy

>Mux t= $\sqrt{(4^* Mux)/(0.9^* N^* Fy)}$

t= 0.62cm

<>PL-3/8"

$$\sqrt{(4^* Muy)/(0.9^* B^* Fy)}$$

PL-3/8" 0.63cm

Usar: PL-3/8"

Cálculo de pernos de anclaje:

Tu= 3234 kg (50%delresistente)

Hallamos la resistencia a tracción de los pernos: Pernos ASTM A36, Fu=4200kg/cm2

□Tn= 24948 kg >>Tu

USAR: 4 PERNOS ASTM A-36 5/8" ϕ

FAJAS TRANSPORTADORAS

Anclajes químicos (varilla has - verificar por especialista)

Cálculo de pernos de anclaje químico:

Tu=4450kg (Carga actuante en el apoyo)

Hallamos la resistencia a tracción de los pernos:

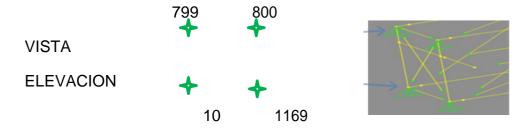
Pernos ASTM A36, Fu=4200kg/cm2

□Tn= 8977.5kg >>Tu

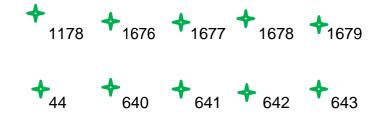
Aseguramos que no falle a tracción:

USAR:4 PERNOS ASTM A-36 3/4" □ □ (VERIFICAR POR HILTI OSIMILAR)

Cálculo de pernos de anclaje químico:


Mu=10749kg-cm

$$t = \sqrt{(4^* Muy)/(0.9^* b^* Fy)}$$


t=1.45cm<>PL-5/8"

Reacciones en los poyos

Reacciones en inserto (inicio de celosía sobre faja existente)

SOPORTES VERTICALES DECELOSIA

LLEGADA DE CELOSIA A PLATAFORMA

4 1168

4 627

SOPORTES VERTICALES DE FAJA NUEVA *LLEGADA A POLEA MOTRIZ*

ARRANQUE DE FAJA EXISTENTE

† 1365

4 254

Se listan las Acciones en los apoyos de las estructuras metálicas para los estados de carga usados:

Tabla 4. REACCIONES CONJUNTAS

TABLA:				
REACCIONES		FX	FY	FZ
		Kgf	Kgf	Kgf
9	DESCARGA	0	0	409
9	POLINES DE CARGA	0	0	43
9	POLINES DE RETORNO	0	0	8
9	PISOS	0	0	251
9	BARANDA	0	0	157
9	FALDÓN	0	0	0
9	POLEA MOTRIZ	0	0	-1
9	POLEACABEZA		0	-1
9	CONTRAPESO	0	0	761
9	BANDA		0	16
9	POLEAS DEFLECTORAS		0	1
9	POLINES IMPACTO		0	0
9	MATERIAL		0	90
9	PASARELA		0	1044
9	MOVIMIENTO RITÌMICO	0	0	705
9	WY	0	0	-95
9	EX	0	0	-185
9	EY	0	0	-80
10	DESCARGA	1106	-15	627
10	POLINES DECARGA	256	1	133
10	POLINES DE RETORNO	41	0	21
10	PISOS	401	-41	265
10	BARANDA	233	-28	157
10	FALDÓN	1	0	0
10	POLEAMOTRIZ	-9	0	-6
10	POLEACABEZA	9	0	5
10	CONTRAPESO	40	0	10
10	BANDA	61	0	30
10	POLEAS DEFLECTORAS	128	1	83
10	POLINESIMPACTO	1	0	0
10	MATERIAL	349	1	171
10	PASARELA	1666	-171	1102
10	MOVIMIENTO RITÌMICO	89	1	188
10	WY	-212	-23	-74
10	EX	-1494	-2	-339
10	EY	-958	-296	-200
11	DESCARGA	-559	20	-59
11	POLINES DECARGA	-174	-1	-29

11	POLINES DE RETORNO	-26	0	-4
11	PISOS	-179	53	-13
11	BARANDA	-101	37	-7
11	FALDÓN	1	0	0
11	POLEAMOTRIZ	12	0	2
11	POLEACABEZA	-3	0	-1
11	CONTRAPESO	37	0	5
11	BANDA	-31	0	-5
11	POLEASDEFLECTORAS	-132	-1	-22
11	POLINESIMPACTO	132	0	0
11	MATERIAL	-181	-2	-31
11			_	
	PASARELA MOVIMIENTO RITÌMICO	-743	220	-55
11		-821	-6	-127
11	WY	-157	-84	-23
11	EX	-1594	-4	-223
11	EY	-878	-339	-132
44	DESCARGA	0	69	1428
44	POLINES DECARGA	0	13	225
44	POLINES DE RETORNO	0	2	38
44	PISOS	0	8	557
44	BARANDA	0	3	336
44	FALDÓN	0	0	0
44	POLEAMOTRIZ	0	4	76
44	POLEACABEZA	0	4	76
44	CONTRAPESO	0	-1	-14
44	BANDA	0	3	61
44	POLEASDEFLECTORAS	0	1	22
44	POLINESIMPACTO	0	0	0
44	MATERIAL	0	20	353
44	PASARELA	0	33	2315
44	MOVIMIENTO RITÌMICO	0	18	323
44	WY	0	-101	-1019
44	EX	0	29	560
44	EY	0	-504	-5098
254	DESCARGA	0	0	57
254	POLINES DECARGA	0	0	34
254	POLINES DE RETORNO	0	0	5
254	PISOS	0	0	8
254	BARANDA	0	0	4
254 254	FALDÓN	0	0	0
254 254	POLEAMOTRIZ	0	0	0
254 254	POLEACABEZA	0	0	66
254 254	CONTRAPESO	0	0	1
254 254	BANDA	0	0	8
254 254	POLEASDEFLECTORAS	0	0	23
254 254	POLEASDEFLECTORAS POLINESIMPACTO	0	0	0
254 254	MATERIAL	0	0	45
			_	
254	PASARELA	0	0	31
254	MOVIMIENTO RITÍMICO	0	0	119 -2
254	WY		0	
254	EX	0	0	-24

254	EY	0	0	0
268	DESCARGA	0	0	56
268	POLINES DECARGA	0		13
-	POLINES DE RETORNO	0	0	2
268 268	PISOS	0		15
		0	0	+
268	BARANDA	0	0	9
268	FALDÓN	0	0	18
268	POLEAMOTRIZ	0	0	46
268	POLEACABEZA	0	0	1
268	CONTRAPESO	0	0	5
268	BANDA	0	0	5
268	POLEASDEFLECTORAS	0	0	0
268	POLINESIMPACTO	0	0	15
268	MATERIAL	0	0	27
268	PASARELA	0	0	64
268	MOVIMIENTO RITÌMICO	0	0	-23
268	WY	0	0	17
268	EX	0	0	166
268	EY	0	0	72
285	DESCARGA	-198	0	130
285	POLINES DECARGA	-33	0	46
285	POLINES DE RETORNO	-6	0	9
285	PISOS	-69	0	11
285	BARANDA	-40	0	6
285	FALDÓN	-7	0	84
285	POLEAMOTRIZ	7	0	32
285	POLEACABEZA	-2	0	0
285 285	CONTRAPESO	-24	0	4
285 285	BANDA	-12	0	16
285 285	POLEASDEFLECTORAS	2	0	0
285 285	POLINESIMPACTO	-5	0	67
285 285	MATERIAL	-68	0	94
285 285	PASARELA	-286	0	45
			0	
285	MOVIMIENTO RITÍMICO	282		-17
285	WY	-77	-29	12
285	EX	-744	0	66
285	EY	-322	0	51
286	DESCARGA	-37	0	148
286	POLINES DECARGA	-5	0	51
286	POLINES DE RETORNO	-1	0	10
286	PISOS	-14	0	7
286	BARANDA	-8	0	4
286	FALDÓN	4	0	11
286	POLEAMOTRIZ	-2	0	-1
286	POLEACABEZA	0	0	0
286	CONTRAPESO	-5	0	3
286	BANDA	-2	0	18
286	POLEASDEFLECTORAS	0	0	0
286	POLINESIMPACTO	3	0	9
286	MATERIAL	-10	0	106
286	PASARELA	-58	0	29
۷00		[-JU	V	دع

286	MOVIMIENTO RITÌMICO	37	0	1
286	WY	-15	10	7
286	EX	-144	0	5
286	EY	-64	2	29
288	DESCARGA	-181	0	147
288	POLINES DECARGA	-26	0	52
288	POLINES DE RETORNO	-5	0	10
288	PISOS	-69	0	14
288	BARANDA	-40	0	8
288	FALDÓN	1	0	-2
288	POLEAMOTRIZ	-7	0	2
288	POLEACABEZA	-3	0	1
288	CONTRAPESO	-19	0	-1
288	BANDA	-9	0	19
288	POLEASDEFLECTORAS	2	0	-1
288	POLINESIMPACTO	1	0	-1
288	MATERIAL	-52	0	108
288	PASARELA	-285	-1	57
288	MOVIMIENTO RITÌMICO	130	0	-39
288	WY	-90	-34	31
288	EX	-772	0	185
288	EY	-363	-6	114
289	DESCARGA	-92	0	234
289	POLINES DECARGA	-14	0	65
289	POLINES DE RETORNO	-3	0	12
289	PISOS	-31	0	33
289	BARANDA	-18	0	19
289	FALDÓN	0	0	0
289	POLEAMOTRIZ	0 -1	0	-1
289	POLEACABEZA	0	0	-1
289	CONTRAPESO	-23	0	40
289	BANDA	- <u>-23</u> -5	0	23
289	POLEASDEFLECTORAS	0	0	0
	POLINESIMPACTO	0	0	0
289	MATERIAL	-29	0	134
289		-130	0	136
289	PASARELA MOVIMIENTO RITÌMICO		0	42
289	WY	6	1	
289	EX	-5 -101	0	-38
289 289	EY	-101 -47	-1	-186 -87
			_	1521
640	DESCARGA POLINES DECARGA	0	74	
640	POLINES DECARGA POLINES DE RETORNO	0	10 2	186
640		0		35
640	PISOS	0	13	630
640	BARANDA FALDÓN	0	/ C	383
640	FALDÓN POLEAMOTRIZ	0	0	0
640	POLEAMOTRIZ	0	U	6
640	POLEACABEZA	0	1	11
640	CONTRAPESO	0	U	-2
640	BANDA	0	4	68
640	POLEASDEFLECTORAS	0	0	-5

640	POLINESIMPACTO	0	0	0
640	MATERIAL	0	22	391
640	PASARELA	0	54	2619
640	MOVIMIENTO RITÌMICO	0	2	40
640	WY	0	-120	-1271
640	EX	0	3	59
640	EY	0	-606	-6495
641	DESCARGA	0	74	1541
641	POLINES DECARGA	0	11	194
641	POLINES DE RETORNO	0	2	36
641	PISOS	0	12	637
641	BARANDA	0	6	387
641	FALDÓN	0	0	0
641	POLEAMOTRIZ	0	0	-1
641	POLEACABEZA	0	0	-1
641	CONTRAPESO	0	0	2
641	BANDA	0	4	70
641	POLEASDEFLECTORAS	0	0	0
641	POLINESIMPACTO	0	0	0
641	MATERIAL	0	23	401
641	PASARELA	0	50	2650
641	MOVIMIENTO RITÌMICO	0	1	10
641	WY	0	-113	-1207
641	EX		-1 -1	-7
641	EY	0	-582	-7 -6241
1168	DESCARGA	0	0	239
1168	POLINES DECARGA		0	44
1168	POLINES DE CARGA POLINES DE RETORNO	0	0	8
1168	PISOS	0	0	-129
1168	BARANDA	0	0	-97
1168	FALDÓN	0	0	0
1168	POLEAMOTRIZ	0	0	-1
1168	POLEACABEZA	0	0	-1
	CONTRAPESO	0	0	764
1168 1168	BANDA	0	_	16
1168	POLEASDEFLECTORAS	0	0	1
-	POLINESIMPACTO	0	0	0
1168 1168	MATERIAL	_	-	92
1168	PASARELA	0	0	-534
	MOVIMIENTO RITÌMICO	0	0	
1168		_		706
1168	WY	0	0	98
1168	EX	0	0	-194
1168	EY	0	0	95
1169	DESCARGA	885	0	473
1169	POLINES DE RETORNO	249	0	130
1169	POLINES DE RETORNO	40	0	21
1169	PISOS	-28	3	-49
1169	BARANDA	-51	2	-51
1169	FALDÓN POLEAMOTRIZ	1	0	0
1169	POLEAMOTRIZ	-9	0	-6
1169	POLEACABEZA	8	0	5

1169	CONTRAPESO	36	0	9
1169	BANDA	59	0	29
1169	POLEASDEFLECTORAS	125	0	82
1169	POLINESIMPACTO	0	0	0
1169	MATERIAL	337	0	166
1169	PASARELA	-115	13	-203
1169	MOVIMIENTO RITÌMICO	100	0	192
1169	WY	207	2	72
1169	EX	-1372	3	-285
1169	EY	924	22	190
1170	DESCARGA	-507	-3	-64
1170	POLINES DECARGA	-175	0	-29
1170	POLINES DE RETORNO	-26	0	-4
1170	PISOS	-19	-10	-7
1170	BARANDA	5	-8	-3
1170	FALDÓN	1	0	0
1170	POLEAMOTRIZ	12	0	2
1170	POLEACABEZA	-3	0	0
1170	CONTRAPESO	30	0	5
	BANDA	-33	0	-5
1170		-33 -129		
1170	POLEASDEFLECTORAS	_	0	-21
1170	POLINESIMPACTO	0	0	0
1170	MATERIAL	-187	0	-31
1170	PASARELA DITIMICO	-80	-40	-31
1170	MOVIMIENTO RITÌMICO	-763	2	-123
1170	WY	139	1	21
1170	EX EY	-1325	4	-209
1170	<u> </u>	813	26	125
1178	DESCARGA	0	-71	1111
1178	POLINES DECARGA	0	-13	225
1178	POLINES DE RETORNO	0	-2	38
1178	PISOS	0	-14	-165
1178	BARANDA	0	-8	-145
1178	FALDON	0	0	0
1178	POLEA MOTRIZ	0	-4	77
1178	POLEA CABEZA	0	-4	76
1178	CONTRAPESO	0	1	-13
1178	BANDA	0	-3	61
1178	POLEAS DEFLECTORAS	0	-1	19
1178	POLINESIMPACTO	0	0	0
1178	MATERIAL	0	-20	352
1178	PASARELA DITIMIO	0	-58	-684
1178	MOVIMIENTO RITÍMICO	0	-18	313
1178	WY	0	-96	1023
1178	EX	0	-33	537
1178	EY	0	-504	5113
1365	DESCARGA	0	U	53
1365	POLINES DECARGA	0	0	34
1365	POLINES DE RETORNO	0	0	5
1365	PISOS	0	0	-1
1365	BARANDA	0	0	-1

1365	FALDÓN	0	0	0
1365	POLEAMOTRIZ	0	0	0
1365	POLEACABEZA	0	0	66
1365	CONTRAPESO	0	0	1
1365	BANDA	0	0	8
	POLEASDEFLECTORAS	0	-	23
1365		0	0	_
1365	POLINESIMPACTO MATERIAL	0	0	0
1365		0	0	45
1365	PASARELA	0	0	-4
1365	MOVIMIENTO RITÍMICO	0	0	118
1365	WY	0	0	2
1365	EX	0	0	-24
1365	EY	0	0	0
1379	DESCARGA	0	0	48
1379	POLINES DE CARGA	0	0	13
1379	POLINES DE RETORNO	0	0	2
1379	PISOS	0	0	-1
1379	BARANDA	0	0	-2
1379	FALDÓN	0	0	18
1379	POLEA MOTRIZ	0	0	46
1379	POLEA CABEZA	0	0	1
1379	CONTRAPESO	0	0	6
1379	BANDA	0	0	5
1379	POLEAS DEFLECTORAS	0	0	0
1379	POLINES IMPACTO	0	0	15
1379	MATERIAL	0	0	27
1379	PASARELA	0	0	-3
1379	MOVIMIENTO RITÌMICO	0	0	-23
1379	WY	0	0	-19
1379	EX	0	0	166
1379	EY	0	0	-81
1384	DESCARGA	-164	0	125
1384	POLINES DE CARGA	-33	0	46
1384	POLINES DE RETORNO	-6	0	9
1384	PISOS	3	0	0
1384	BARANDA	8	0	-1
1384	FALDÓN	-7	0	84
1384	POLEAMOTRIZ	7	0	32
1384	POLEACABEZA	-2	0	0
1384	CONTRAPESO	-25	0	4
1384	BANDA	-12	0	16
1384	POLEASDEFLECTORAS	2	0	0
1384	POLINESIMPACTO	-5	0	67
1384	MATERIAL	-67	0	94
1384	PASARELA	13	0	-2
1384	MOVIMIENTO RITÌMICO	283	0	- <u>-</u> 2
1384	WY	87	-27	-14
			<u>-21</u>	
1384	EX EY	-745	0	67
1384		362	0	-58
1385	DESCARGA	-30	0	144
1385	POLINES DE CARGA	-5	0	51

1385	POLINES DE RETORNO	-1	0	10
1385	PISOS	1	0	0
1385	BARANDA	2	0	-1
1385	FALDÓN	4	0	11
1385	POLEA MOTRIZ	-2	0	-1
1385	POLEA CABEZA	0	0	0
1385	CONTRAPESO	-5	0	3
1385	BANDA	-2	0	18
1385	POLEAS DEFLECTORAS	0	0	0
1385	POLINES IMPACTO	3	0	9
1385	MATERIAL	-10	0	106
1385	PASARELA	3	0	-1
1385	MOVIMIENTO RITÌMICO	37	0	1
1385	WY	17	15	-7
1385	EX	-144	0	5
1385	EY	72	2	-32
1386	DESCARGA	-146	0	140
1386	POLINES DECARGA	-25	0	52
	POLINES DE CARGA POLINES DE RETORNO	-25 -5	0	10
1386		-5 4	_	-1
1386	PISOS		0	
1386	BARANDA	8	0	-2
1386	FALDÓN	1	0	-2
1386	POLEA MOTRIZ	-7	0	2
1386	POLEA CABEZA	-3	0	1
1386	CONTRAPESO	-20	0	-1
1386	BANDA	-9	0	19
1386	POLEAS DEFLECTORAS	2	0	-1
1386	POLINESIMPACTO	1	0	-1
1386	MATERIAL	-51	0	108
1386	PASARELA	15	-1	-5
1386	MOVIMIENTO RITÍMICO	131	0	-39
1386	WY	101	-32	-35
1386	EX	-773	0	185
1386	EY	411	-6	-131
1387	DESCARGA	-78	0	221
1387	POLINES DECARGA	-14	0	65
1387	POLINES DE RETORNO	-3	0	12
1387	PISOS	0	0	2
1387	BARANDA	3	0	-2
1387	FALDÓN	0	0	0
1387	POLEAMOTRIZ	-1	0	-1
1387	POLEACABEZA	0	0	-1
1387	CONTRAPESO	-22	0	39
1387	BANDA	-5	0	23
1387	POLEASDEFLECTORAS	0	0	0
1387	POLINESIMPACTO	0	0	0
1387	MATERIAL	-29	0	134
1387	PASARELA	0	0	8
1387	MOVIMIENTO RITÌMICO	6	0	42
1387	WY	5	7	43
			'n	
1387	EX	-102	0	-186

1387	EY	50	-1	107
1676	DESCARGA	0	-73	1155
1676	POLINES DECARGA	0	-10	186
1676	POLINES DE RETORNO	0	-2	35
1676	PISOS	0	-11	-195
1676	BARANDA	0	-5	-170
1676	FALDÓN	0	0	0
1676	POLEAMOTRIZ	0	0	7
1676	POLEACABEZA	0	-1	11
1676	CONTRAPESO	0	0	-2
1676	BANDA	0	-4	68
1676	POLEASDEFLECTORAS	0	0	-5
1676	POLINESIMPACTO	0	0	0
1676	MATERIAL	0	-22	392
1676	PASARELA	0	-47	-811
1676	MOVIMIENTO RITÌMICO	0	-2	32
1676	WY	0	-115	1271
1676	EX	0	-4	66
1676	EY	0	-607	6499
1677	DESCARGA	0	-74	1166
1677	POLINES DECARGA	0	-11	193
1677	POLINES DE RETORNO	0	-2	36
1677	PISOS	0	-13	-192
1677	BARANDA	0	-6	-169
1677	FALDÓN	0	0	0
1677	POLEAMOTRIZ	0	0	-1
1677	POLEACABEZA	0	0	-2
1677	CONTRAPESO	0	0	0
1677	BANDA	0	-4	70
1677	POLEASDEFLECTORAS	0	0	0
1677	POLINESIMPACTO	0	0	0
1677	MATERIAL	0	-22	400
1677	PASARELA	0	-54	-797
1677	MOVIMIENTO RITÌMICO	0	0	-2
1677	WY	0	-109	1208
1677	EX	0	-1	10
1677	EY	0	-582	6242
1678	DESCARGA	0	-74	1158
1678	POLINES DECARGA	0	-11	192
1678	POLINES DE RETORNO	0	-2	36
1678	PISOS	0	-13	-197
1678	BARANDA	0	-6	-172
1678	FALDÓN	0	0	0
1678	POLEAMOTRIZ	0	0	0
1678	POLEACABEZA	0	0	0
1678	CONTRAPESO	0	1	-8
1678	BANDA	0	-4	69
1678	POLEASDEFLECTORAS	0	0	0
1678	POLINESIMPACTO	0	0	0
1678	MATERIAL	0	-22	398
1678	PASARELA	0	- <u>-</u> 22	-819
1070	I AOANLLA	U	<u> </u>	-013

1678	MOVIMIENTO RITÌMICO	0	1	-10
1678	WY	0	-76	866
1678	EX	0	-1	23
1678	EY	0	-445	4787
1679	DESCARGA	0	-78	1234
1679	POLINES DECARGA	0	-11	203
1679	POLINES DE RETORNO	0	-2	38
1679	PISOS	0	-12	-177
1679	BARANDA	0	-6	-161
1679	FALDÓN	0	0	0
1679	POLEAMOTRIZ	0	0	0
1679	POLEACABEZA	0	0	0
1679	CONTRAPESO	0	-3	44
1679	BANDA	0	-4	73
1679	POLEASDEFLECTORAS	0	0	0
1679	POLINESIMPACTO	0	0	0
1679	MATERIAL	0	-24	421
1679	PASARELA	0	-52	-737
1679	MOVIMIENTO RITÌMICO	0	-2	21
1679	WY	0	-223	2380
1679	EX	0	10	-158
1679	EY	0	-1086	11437

COSTOS

ITEM	1 DESCRIPCION	CANTIDAD	P.U.(\$)	P.T.(\$)
1	VIGAS H 40"X20"X15M	2	2000	2400
2	VIGAS C 12"X8"X6M	20	6000	120000
3	VIGAS C 6"X4"X1M	40	2000	80000
3	NEUMATICOS R22	12	4880	58560
4	MUELLES	18	5000	90000
5	TUBOS DIA30"X6M	2	1550	3100
6	VIGAS 6"X4"X4M	4	500	2000
7	FAJAS 24"X500M	1	20000	20000
8	ANGULOS 6"X6"X6M	6	600	3600
9	EJES MACISO DIA 15X12M	3	300	900
10	TUERCAS 3/4"	60	700	42000
11	TUERCAS 5/8"	100	1000	100000
12	TUERCAS 1/2"	600	2000	1200000
13	PLATINAS 4"X0,4"	10	300	3000
14	PLANCHAS 1/8"	4	240	960
15	MALLAS	4	400	1600
16	MOTO REDUCTOR NW80 100HPS	2	5000	10000
17	MOTO REDUCTOR NW80 200HPS	4	10000	40000
18	MOTO REDUCTOR NW96 200HPS	2	2000	4000
19	GENERADOR	1	20000	20000
		<u> </u>	sumatoria(\$)	1802120