

FACULTAD DE INGENIERÍA Y ARQUITECTURA

ESCUELA PROFESIONAL DE INGENIERÍA INDUSTRIAL

TRABAJO DE SUFICIENCIA PROFESIONAL

"RENOVACIÓN DE REDES ELÉCTRICAS CON MEDICIÓN
CONCENTRADA PARA REDUCIR LAS PERDIDAS EN LA ZONA SUR
DEL CALLAO CON LA EMPRESA DOMINION PERÚ SAC"

PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO INDUSTRIAL

PRESENTADO POR EL BACHILLER
JESÚS MANUEL PELAEZ MENDOZA

ASESOR ROGELIO ALEXSANDER LOPEZ RODAS

LIMA, PERÚ

MARZO, 2021

DEDICATORIA

Quiero dedicar esta tesis primeramente a Dios, a mi Madre, mi Esposa y mis hijos por el apoyo incondicional y verdadero, mis profesores y todas las personas que me apoyaron con el fin de que mi trabajo se realice con éxito en especial a aquellos que compartieron sus experiencias y conocimientos.

Mi gratitud, por hacer posible escribir y concluir el desarrollo de esta tesis.

AGRADECIMIENTO

En primer lugar quiero agradecer a Dios por darme la oportunidad de ser alguien en la vida y cuidar mi salud, a mi familia por apoyarme en cada decisión y proyecto, a la Universidad Alas Peruanas por haberme dado la oportunidad de formarme en la Escuela de Ingeniería Industrial y haber sido mi apoyo durante todo este tiempo.

De manera especial a mi tutor por haberme guiado en la elaboración de mi tesis, que gracias a sus consejos y correcciones hoy puedo culminar este trabajo, además del apoyo para desarrollarme profesionalmente y seguir cultivando mis valores.

INTRODUCCIÓN

El objetivo permanente de las empresas eléctricas es reducir las pérdidas de energía eléctrica, en la empresa Enel Perú SAA. Las perdidas por hurto de energía son de 103 millones de soles anuales lo que equivale a 207 GHz, el control adecuado de perdidas permite a la empresa Enel Perú SAA. Mejorar sus ingresos y brindar un mejor abastecimiento a sus clientes.

Las mayores pérdidas en toda la concesión de Enel Perú SAA. Se ubican en la zona Sur del Callao, para ello se plantea un programa de reducción de pérdidas que consiste en la renovación de las redes existentes y el cambio de medidores de última generación, el proyecto tiene como meta la reducción de pérdidas del 54.53% en promedio. Al 5% cuando culmine el proyecto.

Las pérdidas de energía eléctrica se evalúan a partir de los balances de energía del sistema eléctrico estos nos dan con exactitud el valor de las pérdidas de estas, que se determinan con la medición de la energía comprada y la energía facturada.

Estas pérdidas no se pueden eliminar del todo, pero es posible reducirlas mediante mejoras con el cambio de la red anti hurto y la medición concentrada con tecnología avanzada, el cambio de redes eléctricas se da por el deterioro de las mismas y por el incremento de conexiones clandestinas y el cambio de los medidores con medición concentrados se da por los constantes errores en el proceso de facturación y las fallas continuas en la interrupción del servicio y medición de las mismas.

RESUMEN

Las empresas concesionarias del sector electricidad, todas sin excepción, han sufrido y sufren aún los efectos de las elevadas pérdidas eléctricas, sobre todo en distribución. Una de las zonas con mayor incidencia de hurto de energía eléctrica en la concesionaria Enel es la zona Sur del Callao el cual fluctúan en promedio del 54.53%, y se pretende que fluctúen en 5%, las pérdidas son por conexiones clandestinas a la red eléctrica, conexiones clandestinas al alumbrado público, error en el sistema de medición y manipulación del equipo de medición para evitar el registro del consumo que afectan la facturación correcta, estas conexiones no solo pone en peligro a los hurtadores sino también a los vecinos de la zona pues pueden causar grandes incendios.

El objetivo principal es la formulación de un plan de reducción de pérdidas del mismo, para ello, se ha determinado con la empresa Dominion Perú la renovación de las Redes eléctricas y el cambio de los medidores con medición concentrada este sistema evitará la mala manipulación de los medidores y las conexiones ilegales, este proyecto plantea mejorar en la solución del problema, con el desarrollo de una nueva tecnología, adecuada para la gestión de las pérdidas eléctricas y la elaboración inicial de un plan de reducción de pérdidas que contempla el conjunto de los factores, pero en especial aquellos que tienen que ver con las pérdidas no técnicas.

ABSTRACT

The concession companies in the electricity sector, all without exception, have suffered and still suffer from the effects of high electricity losses, especially in distribution. One of the areas with the highest incidence of electricity theft in the Enel concessionaire is the southern area of Callao, which fluctuates by an average of 54.53%, and is expected to fluctuate by 5%, the losses are due to clandestine connections to the electricity grid, clandestine connections to public lighting, error in the measurement system and manipulation of the metering equipment to avoid the recording of consumption that affect the correct billing, these connections not only endanger the thieves but also the residents of the area they can cause big fires.

The main objective is the formulation of a plan to reduce losses, for this, the renewal of the electrical networks and the change of the meters with concentrated measurement have been determined with the Dominion Peru company, this system will avoid mishandling of the meters and illegal connections, this project proposes to improve the solution of the problem, with the development of a new technology, suitable for the management of electrical losses and the initial development of a loss reduction plan that considers all the factors, but especially those that have to do with non-technical losses.

INDICE DE CONTENIDO

1	. CA	APÍTULO I GENERALIDADES DE LA EMPRESA	1
	1.1.	ANTECEDENTES DE LA EMPRESA	1
	1.2.	PERFIL DE LA EMPRESA	2
	1.3.	ACTIVIDADES DE LA EMPRESA	4
	1.3	3.1. Misión	5
	1.3	3.2. Visión	5
	1.3	3.3. Objetivo	6
	1.4.	ORGANIZACIÓN ACTUAL DE LA EMPRESA	6
	1.4	l.1. Organigrama de la empresa	8
	1.5.	DESCRIPCIÓN DEL ENTORNO DE LA EMPRESA	9
	1.5	5.1. Rasgos que definen Dominion:	9
2	. CA	NPÍTULO II:	11
R	EALIC	DAD PROBLEMÁTICA	11
	2.1.	DESCRIPCIÓN DE LA REALIDAD PROBLEMÁTICA	11
	2.1.	ANÁLISIS DEL PROBLEMA.	13
	2.2.	OBJETIVO DEL PROYECTO.	14
	2.2	2.1. Objetivo General:	14
	2.2	2.2. Objetivos específicos:	14
3	. CA	PÍTULO III DESARROLLO DEL PROYECTO	16
	3.1.	PLAN ESTRATEGICO	16
	3.2.	DETERMINAR LAS PÉRDIDAS POR BALANCE DE ENERGÍA	DE
	DIST	RIBUCIÓN EN LAS SUB ESTACIONES DE LA ZONA SUR DEL CALLAO	17
	3.3.	METODO DE REDUCCIÓN DE PERDIDAS TECNICAS	21

3.3.1.	Cambio de la red matriz	22
3.3.2.	Rotación de Transformadores.	22
3.3.3.	División de sectores	23
3.4. ME	TODO DE REDUCCIÓN DE PERDIDAS NO TECNICAS	23
3.4.1.	Pérdidas por administración.	24
3.4.2.	Pérdidas por hurto	24
3.4.3.	Pérdidas por conexiones clandestinas.	25
3.4.4.	Pérdidas por conexiones ilegales.	26
3.5. SE	LECCIÓN DE REDES SECUNDARIAS	27
3.5.1.	Cable auto soportado:	44
3.5.2.	Cable Acometida tipo concéntrico antifraude.	46
3.5.3.	Cambio de medidores con nuevas tecnologías	49
3.5.4.	ANALISIS DEL SISTEMA DE MEDICIÓN ACTUAL	50
3.5.5.	Caja Concentradora	51
NUEV	O SISTEMA DE MEDICIÓN CONCENTRADA PROPUESTO	57
3.6		57
3.6.1.	Nuevo Módulo de Medida	58
3.6.2.	Nuevos tableros de distribución	60
3.7. EN	FOQUE DE SOLUCIÓN DEL PROBLEMA	62
3.8. CR	ONOGRAMA DE ACTIVIDADES	65
3.8.1.	COSTO DEL PROYECTO	72
3.9. CC	NCLUSIONES	77
3.10. F	RECOMENCACIONES	79
CADÍT		90

5.	REFERENCIAS BIBLIOGRAGRÁFICAS	. 80
6.	CAPÍTULO V	. 81
7.	GLOSARIOS Y TÉRMINOS	. 81
8.	CAPÍTULO VI	. 87
9.	ANEXOS	. 87
10.		. 87
		. 88
11.	CAPÍTULO IV CITAS Y REFERENCIAS	. 98

INDICE DE GRAFICOS

FIGURA 1 LOGOTIPO DE LA EMPRESA DOMINION	3
FIGURA 2 ESTRUCTURA ORGANIZACIONAL DEL ÁREA ELÉCTRICA EN EL PERÚ	8
FIGURA 3 ESTRUCTURA ORGANIZACIONAL DEL ÁREA PARA REALIZAR EL PROYECTO	9
FIGURA 4. FODA	10
FIGURA 5. ZONA SUR DEL CALLAO	17
FIGURA 6. SISTEMA DE DISTRIBUCIÓN	18
FIGURA 7. PROCESO PARA REDUCIR LAS PÉRDIDAS ELÉCTRICAS	19
FIGURA 8. MEDIDOR MULTIFUNCIÓN TOTALIZADOR	20
FIGURA 9. UBICACIÓN ACTUAL DEL TOTALIZADOR	21
FIGURA 10. CONEXIÓN CLANDESTINA	25
FIGURA 11. CONEXIÓN CLANDESTINA A RED MATRIZ	27
FIGURA 12. PORCENTAJE DE PÉRDIDAS MES ENERO 2020	30
FIGURA 13. PORCENTAJE DE PÉRDIDAS MES FEBRERO 2020	32
FIGURA 14. PORCENTAJE DE PÉRDIDAS MES MARZO 2020	34
FIGURA 15. PORCENTAJE DE PÉRDIDAS MES ABRIL 2020	36
FIGURA 16. PORCENTAJE DE PÉRDIDAS MES MAYO 2020	38
FIGURA 17. PORCENTAJE DE PÉRDIDAS MES JUNIO 2020	40
FIGURA 18. PORCENTAJE DE PÉRDIDAS MES JUNIO 2020	42
FIGURA 19. CABLE AUTO SOPORTADO O RED MATRIZ PARA EL PROYECTO	45
FIGURA 20. CABLE MATRIZ AUTO SOPORTADO Y ACOMETIDA QUE SE CAMBIARA EN EL	
PROYECTO	46
FIGURA 21. CABLE DE ACOMETIDA ANTIFRAUDE PARA EL PROYECTO	48
FIGURA 22. INSTALACIÓN DE LA CAJA CONCENTRADO ACTUAL.	51

FIGURA 23. MÓDULO DE MEDIDA	52
FIGURA 24. MÓDULO DE CABECERA PLC	53
FIGURA 25. COLECTOR DE DATOS Y MODEM	54
FIGURA 26. MEDIDOR DESPLAYE UBICADO EN LA FACHADA DEL CLIENTE	55
FIGURA 27. FUNCIONAMIENTO DEL SISTEMA DAM (DISTRIBUCIÓN AÉREA MIXTA)	56
FIGURA 28. PROPUESTA DE NUEVA CAJA CONCENTRADORA	58
FIGURA 29. DIAGRAMA DE CONEXIÓN MÓDULO DE MEDIDA CON DISPLAY	59
FIGURA 30. NUEVO MÓDULO CON DISPLAY	60
FIGURA 31. PROPUESTA DE TABLERO DE DISTRIBUCIÓN	61
FIGURA 32. TABLERO DE DISTRIBUCIÓN CON SENSOR DE APERTURA DE PUERTA	62
FIGURA 33. POSTE DE 15 METROS DE ALTURA CON SOPORTE DE TRANSFORMADOR DE	
DISTRIBUCIÓN QUE INCLUYE TABLERO DE DISTRIBUCIÓN	64
FIGURA 34. ACTIVIDADES A DESARROLLARSE EN LA ETAPA 03 DEL PROYECTO	66
FIGURA 35. ACTIVIDADES A DESARROLLARSE EN LA ETAPA 01 DEL PROYECTO	67
FIGURA 36. ACTIVIDADES A DESARROLLARSE EN LA ETAPA 02 DEL PROYECTO	68
FIGURA 37. ACTIVIDADES A DESARROLLARSE EN LA ETAPA 04 DEL PROYECTO	69
FIGURA 38. ACTIVIDADES A DESARROLLARSE EN LA ETAPA 05 DEL PROYECTO	70
FIGURA 39. ACTIVIDADES A DESARROLLARSE EN LA ETAPA 06 DEL PROYECTO	71
FIGURA 40. CERTIFICADO DE CONFORMIDAD DE CABLE AUTO SOPORTADO	87
FIGURA 41. CERTIFICADO DEL FABRICANTE DEL CABLE AUTO SOPORTADO	88
FIGURA 42. CERTIFICADO DE LA NORMA TÉCNICA DE CALIDAD DE LOS SERVICIOS ELÉCTRIC	cos.
	89
FIGURA 43. NORMA LEGAL DE CALIDAD DE LOS SERVICIOS ELÉCTRICOS	90

FIGURA 44. NORA DE PRENSA POR PARTE DE ENEL CON RESPECTO A LOS MEDIDORES	
INTELIGENTES	91
FIGURA 45. NORMA LEGAL DE MEDICIÓN CENTRALIZADA	92
FIGURA 46. PROCEDIMIENTO DE CAMBIO DE MEDIDORES Y ACCESORIOS.	93
FIGURA 47. PROCEDIMIENTO DE INSTALACIÓN DE CAJAS CONCENTRADORAS	94
FIGURA 48. NORMA INTERNACIONAL QUE CUMPLEN LOS MEDIDORES	95
FIGURA 49. NORMA INTERNACIONAL QUE CUMPLEN LOS MEDIDORES POR CLASE	96
FIGURA 50. HOMOLOGACIÓN DE APROBACIÓN DE LOS MEDIDORES EN EL PERÚ	97

INDICE DE TABLAS

TABLA 1 BALANCE DE PÉRDIDAS DE LAS 45 SED MES ENERO 2020	29
TABLA 2 BALANCE DE PÉRDIDAS DE LAS 45 SED MES FEBRERO (DOMINION, 2020)	31
TABLA 3 BALANCE DE PÉRDIDAS DE LAS 45 SED MES MARZO 2020	33
Tabla 4 Balance de pérdidas de las 45 SED mes abril 2020	35
Tabla 5 Balance de pérdidas de las 45 SED mes mayo 2020	37
Tabla 6 Balance de pérdidas se las 45 SED mes junio 2020	39
Tabla 7 Balance de perdidas mensuales de enero a junio 2020 en las 45 SED de la	4
ZONA SUR DEL CALLAO	41
TABLA 8. SED SELECCIONADAS PARA LA RENOVACIÓN DE REDES CON MEDICIÓN CONCENTR	ADA
	43
TABLA 9. TIEMPO APROXIMADO DE EJECUCIÓN DEL PROYECTO	72
Tabla 10. Costo de caja concentradora	72
Tabla 11. Costo de tablero de distribución	73
TABLA 12. COSTO DE RED DE DISTRIBUCIÓN EN BAJA TENSIÓN	74
Tabla 13. Costo de red media tensión	74
Tabla 14. Costo mano de obra	75
TABLA 15. COSTO TOTAL DEL PROYECTO	76

CAPÍTULO I

GENERALIDADES DE LA EMPRESA

1.1. ANTECEDENTES DE LA EMPRESA

Dominion, fundada en 1999, se ha desarrollado hasta ser actualmente una compañía global de servicios multitécnicos y de soluciones de ingeniería especializada, que combina conocimiento, tecnología e innovación para colaborar con sus clientes a hacer sus procesos beneficiosos más eficientes, ya sea a través del outsourcing completo de los mismos ("Servicios") o por la aplicación de soluciones basadas en tecnologías especializadas y plataformas ("Soluciones"). Alcanzó en 2018 una facturación de 1.080 millones de Euros.

(DOMINION, 2020)

Desde el año 2012 Dominion Perú soluciones y servicios SAC inicia actividades Con dirección Legal en Av. Guardia Civil Nro. 638 La Campiña Zona Cuatro Chorrillos Lima Perú.

La Principal Actividad con la que inicia operaciones en Perú es Telecomunicaciones con Telefónica del Perú, luego firma contrato con la compañía Claro y recientemente firma un contrato con Enel Perú SAA. Para la Construcción de Redes. Mantenimiento de Redes e Instalación de Nuevos Servicios, podemos mencionar también que Dominion cuenta con nueve sedes en el Perú (Arequipa, Callao, Ica, Huancayo, Lima-Chorrillos, Lima-Villa El Salvador, Maynas, Loreto-Maynas y Loreto-Alto Amazonas).

1.2. PERFIL DE LA EMPRESA

Dominion aplica conocimiento sectorial, tecnología e innovación para mejorar los procesos productivos de sus clientes.

Dentro de este marco, Dominion pone un foco especial en las necesidades vinculadas a la disrupción generada por la revolución digital y en el potencial de la digitalización selectiva como herramienta para generar eficiencia (DOMINION, 2020).

La tolerancia y constante capacidad de innovación en procesos ha posicionado a Dominion como un socio de confianza para sus clientes.

Dominion tiene presencia en más de 35 países entre los 05 Continentes

Dominion firma un contrato con Enel para la construcción y mantenimiento de redes eléctricas en Perú y refuerza su posición en el sector eléctrico, la empresa cuenta con personal profesional y técnico especializado para las distintas actividades para desarrollar el contrato firmado con Enel.

El contrato, basado en la carta de adjudicación "Zona 2 del Oeste", contempla la construcción y mantenimiento de instalaciones eléctricas en una de las regiones centro-norte de la provincia Constitucional del Callao, incluyendo el área del aeropuerto. Lima y San Miguel "Precursor", donde las actividades industriales se mezclan con importantes núcleos urbanos Se trata de instalaciones nuevas como centros de transformación, centros de medida, líneas de reparto, líneas aéreas y subterráneas de media tensión y, en general,

toda la infraestructura eléctrica de la zona y su mantenimiento durante los próximos tres años.

Mantiene contrato con telefónica del Perú en mantenimiento de redes de telecomunicación, fibra óptica

Mantiene contrato con Claro en mantenimiento de redes de telecomunicación instalación de internet, cable y telefonía

Figura 1
Logotipo de la Empresa Dominion

(DOMINION, 2020)

Dominion Perú está comprometido con la seguridad, la salud y el bienestar de sus profesionales con el objetivo de reducir al máximo el riesgo de accidentabilidad, mediante el aseguramiento del cumplimiento de la legislación laboral vigente en dicha materia y en cada zona geográfica, la implantación de planes de formación acordes al puesto de trabajo y al centro de trabajo,

fomentando una cultura preventiva, y asegurando los medios, humanos y técnicos necesarios para garantizar la implantación de la planificación preventiva, fomentando la promoción y vigilancia del estado de la salud de sus profesionales.

(DOMINION, 2020)

1.3. ACTIVIDADES DE LA EMPRESA

Dominion aplica conocimiento sectorial, tecnología e innovación para mejorar los procesos productivos de sus clientes.

Dentro de este marco, Dominion pone un foco especial en las necesidades vinculadas a la disrupción generada por la revolución digital y en el potencial de la digitalización selectiva como herramienta para generar eficiencia. (DOMINION, 2020)

Campos de actividad:

- Servicios Multitecnicos, servicios de telecomunicaciones (ejemplo, diseño, construcción, instalación y mantenimiento de redes en Perú para Telefónica), servicios comerciales (ejemplo operación de procesos completos de venta y redes para clientes T&T), servicios de Mantenimientos, Gestión de parada y servicios de Reparación, Reparaciones en Caliente, Servicios de Montaje de Redes Eléctricas, Mantenimiento de Redes en Media y alta Tensión. (DOMINION, 2020)
- Soluciones de Ingeniería Especializada, soluciones propias (ejemplo, desarrollo de nuevas plataformas de ventanas online para un cliente

del sector de los medios de comunicación), Soluciones Terceros (ejemplo, Sistemas de Alerta de Tsunami, incluyendo implantación del radar más grande de Centroamérica), Proyectos 360° (ejemplo Hospital de Antofagasta), Instalaciones Industriales, Proyectos especializados en Oíl & Gas, Automatización y sistemas I&C, Estructuras Altas, revestimientos Industriales, Servicios para plantas Eólicas y PV. (DOMINION, 2020)

1.3.1. Misión

La misión fundamental de Dominion es combinar conocimiento, tecnología e innovación para ayudar a sus clientes a hacer sus procesos productivos más eficientes, ya sea a través del outsourcing de los mismos o por la aplicación de soluciones e ingeniería especializada. Dominion cimienta su liderazgo en un modelo de negocio sostenible, que concilia sus resultados económicos con los intereses de los stakeholders, el respeto al entorno natural y el desarrollo de las comunidades donde opera. (DOMINION, 2020)

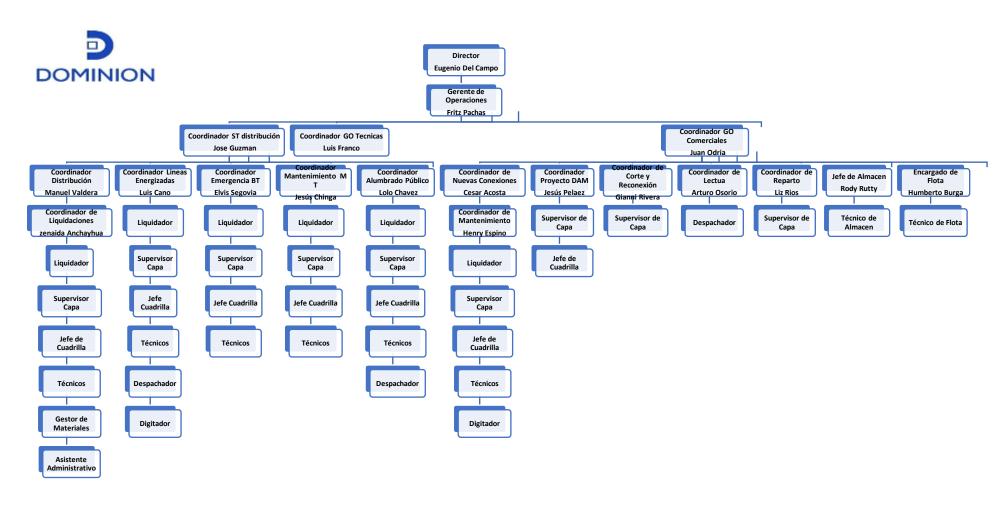
1.3.2. Visión

Ser líderes en soluciones tecnológicas a partir de una actividad permanente innovadora, ser una empresa completamente alineada con las estrategias del cliente, volcada en implantar de principio a fin soluciones tecnológicas y de negocios orientados a la consecución de los objetivos estratégicos de las

empresas que nos dan su confianza impulsada y mejorando su propia posición competitiva. (DOMINION, 2020)

1.3.3. Objetivo

Dominion Ileva a la práctica sus compromisos y objetivos siguiendo los principios éticos, sociales y ambientales internacionalmente reconocidos en el Pacto Mundial de Naciones Unidas. La compañía se adhirió a esta organización a través de su matriz en 2015. Sus objetivos de responsabilidad social trascienden a la propia compañía al estar un número importante de sus soluciones y servicios orientados a fomentar el bienestar de la comunidad y a mejorar la transparencia en la relación entre las empresas y sus grupos de interés (DOMINION, 2020)


1.4. ORGANIZACIÓN ACTUAL DE LA EMPRESA

- Somos una empresa de Servicios y Soluciones.
- Nuestro objetivo es maximizar la eficiencia de los procesos mediante la aplicación innovadora e inteligente de tecnología.
- Trabajamos en los campos de actividad de Tecnología,
 Telecomunicaciones, Industria y Energía, y proveemos servicios en entonos B2C.
- Afrontamos los retos de nuestros clientes de una forma diferente para lograr un resultado más eficiente.
- Somos una empresa Global: 9.000 trabajadores distribuidos en más de 35 países atendiendo a más de 1.000 clientes.

- Facturamos más de 1.000 M€ en todo el mundo.
- Cotizamos en la Bolsa de Madrid desde el 2016 (DOMINION, 2020)

1.4.1. Organigrama de la empresa

Figura 2 Estructura Organizacional del Área Eléctrica en el Perú

(M.Pelaez, 2020)

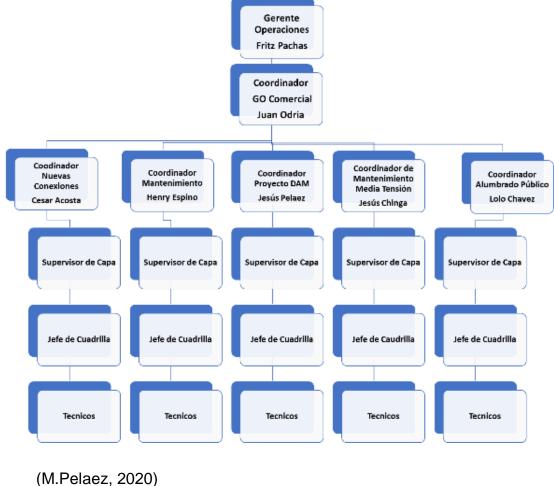


Figura 3 Estructura organizacional del área para realizar el proyecto

1.5. DESCRIPCIÓN DEL ENTORNO DE LA EMPRESA

1.5.1. Rasgos que definen Dominion:

Dominion es una empresa que cuya actividad principal en el Perú es las telecomunicaciones, en el sector eléctrico desarrolla actividades con la empresa Enel Perú SAA. Para desarrollar la construcción y mantenimiento de redes eléctricas en la Zona 2 Oeste Precursores que comprende Callao y San Miguel.

Con la aplicación del conocimiento y la tecnología para mejorar los procesos productivos de sus clientes para lograr la eficiencia.

El FODA nos facilitará comprender la condición actual de la compañía permitiendo, de esta forma, conseguir un diagnóstico minucioso que permita tomar decisiones acordes con los objetivos y políticas formulados.

Figura 4. FODA

FORTALEZAS

Personal capacitado en la gestion operativa
Personal se encuentra capacitado en SGSST
Cuenta con un sistema de gestion de Calidad
capacidad de adecuacion ante las exigencias del
cliente

DEBILIDADES

Demora en la entrega de Ordenes de trabajo No cumplir con el tiempo de entrega despues de finalizado el proyecto asignado.

Falta de apoyo o interes de los encargados del proyecto

escasez de liquidez

FODA

OPORTUNIDADES

Presencia en proyectos que requieren experiencia

Crecimiento y desarrollo en el sector electricidad

Demostrar que los proyectos se realizan con eficiencia y tecnologia

AMENAZAS

Quiebre de alianzas estrategicas

Estancamiento de los proyecto de inversion Público y Privado

Posibilidad de perder talento si dejamos de ser atractivos en el mercado

(M.Pelaez, 2020)

CAPÍTULO II:

REALIDAD PROBLEMÁTICA.

2.1. DESCRIPCIÓN DE LA REALIDAD PROBLEMÁTICA.

La empresa Enel Perú SAA. Que es concesionaria de comercialización de energía eléctrica y de conformidad a las normas establecidas por Osinergmin, indica que tiene constantemente indicadores de pérdidas de energía eléctrica superiores al promedio en la zona Sur del Callao, que en toda su área de concesión y superiores a nivel estándar establecidos por Osinergmin.

Las pérdidas de distribución se definen como la energía que ingresa al sistema y la energía que es suministrada al consumidor final, estas se pueden clasificar en dos tipos: perdidas técnicas y perdidas comerciales, (no técnicas).

Perdidas Técnicas

La pérdida técnica es un componente fijo relacionado con el calor, que se libera cuando se energiza el transformador, y es un componente de pérdida variable causado por el calor de los conductores eléctricos mediante los cuales se suministra electricidad al cliente final las pérdidas técnicas se clasifican según función del componente y según la causa que la origina

Por la función del componente:

- a) Perdidas por transporte
 - En circuito de distribución primaria,

- En circuito de distribución secundaria,
- En transformadores de distribución.

b) Perdidas por transformación

- En sub transmisión/ distribución,
- En transformadores de distribución.

Por la causa que la origina:

- Perdidas fijas que son generadas por el transformador de distribución.
- Perdidas por efecto Joule que son generadas por el paso de la corriente.

Este tipo de pérdidas son normales en cualquier empresa distribuidora el cual no pueden ser eliminadas totalmente solo pueden reducirse a través del mejoramiento de la red.

Pérdidas No Técnicas

Perdidas comerciales también denominadas perdidas no técnicas surgen por razones ajenas a las propiedades físicas de los conductores eléctricos y transformadores entre las principales causas se tiene:

Consumo de usuarios no registrados

Comprende la conexión directa de un usuario sin haber registrado su contrato en la empresa distribuidora y se conectan sin autorización.

Fraude por hurto

Comprende todos los casos en los que el usuario altera intencionalmente el medidor eléctrico o toma energía eléctrica de la red de distribución sin la autorización correspondiente.

Errores de medida

Comprende cuando el consumo es medido incorrectamente es decir la lectura del medidor no concuerda con la factura emitida por el concesionario.

2.1. ANÁLISIS DEL PROBLEMA.

"La pérdida de electricidad es un tema complicado para la compañía distribuidora de energía Enel Perú SAA, que se puede controlar. Para ello, debe invertir en sistemas de redes modernos con sistemas inteligentes y tecnologías más avanzadas de medición. La crisis económica por la cual atraviesa nuestro país en la actualidad por el tema de la Pandemia del Covi-19, la falta de trabajo y la no inversión extranjera han lleva a un incremento de las perdidas de energía en especial en las zonas de más bajos recursos económicos como la zona Sur del Callao, esto se ha vuelto una forma de práctica para los nuevos métodos de hurto de energía, vulnerando las conexiones eléctricas, para evadir los registros reales de facturación, que motivan a no pagar los recibos de luz y esto genera órdenes de corte de luz por falta de pago, estas serían las causas por las que los moradores se conectan de forma clandestina o manipulan los medidores.

El hurto de energía eléctrica a través de la vulneración de las redes mediante conexiones clandestinas a la red matriz, al Alumbrado Público y la manipulación de los medidores para evitar la facturación correcta en los recibos de luz generan efectos económicos negativos para Enel Perú SAA, esta acción ilegal no solo tiene a los clientes moradores de la zona Sur del Callao, sino también la Industria y comercio lo que contribuye una fuerte incidencia sobre moral y la ética de la población.

Con la renovación de las redes eléctricas y el cambio en la medición concentrada se reducirán las perdidas en la zona sur del callao, con el apoyo de la empresa Dominion Perú SAC que cuenta con personal capacitado, con experiencia y conocimiento en el tema se ejecutara el proyecto.

2.2. OBJETIVO DEL PROYECTO.

2.2.1. Objetivo General:

Renovación de redes eléctricas con medición concentrada para reducir las pérdidas en la zona Sur del Callao con la empresa Dominion Perú SAC.

2.2.2. Objetivos específicos:

- ✓ Desarrollar un Plan para la reducción de pérdidas.
- ✓ Determinar las pérdidas eléctricas en la zona Sur del Callao en las 45 sub estaciones de servicio eléctrico durante el periodo de los seis primeros meses del año 2020.

- ✓ Cambiar las redes eléctricas existentes por unas nuevas con protección anti hurto.
- ✓ Lograr una correcta medición de la energía, con medidores de última tecnología que cuenten con certificación de parte del fabricante y de lnacal para los clientes finales.

CAPÍTULO III

DESARROLLO DEL PROYECTO

3.1. PLAN ESTRATÉGICO

Con el fin de reducir la pérdida de energía y los desafíos de la ley de gestión del sector energético, Enel Perú SAA se encuentra actualmente en gestión empresarial. Contrató a Dominion Perú SAC. El objetivo básico es renovar la red de distribución mediante medición centralizada en la zona sur del Callao. El desarrollo del proyecto propondrá un método para reducir pérdidas en la zona sur del Callao, que se basa en el balance energético de la subestación de distribución para reducir y mantener una tecnología de pérdida de energía controlada.

La principal actividad de este método es seleccionar la subestación con la mayor tasa de pérdidas para optimizar el tiempo y los recursos. Las actividades para implementar el proyecto incluyen minimizar la vulnerabilidad de la red eléctrica existente, por lo que se consideran nuevas opciones, como renovar el cable de la matriz de red aérea, cambiar la conexión al sistema de protección anti fraude y cambiar la instrumentación para la medición centralizada. Los requisitos del RM 137-2009-MEM / DM para el establecimiento de un sistema de medición centralizado, por otro lado, la consolidación de nuevos suministros y el refinanciamiento de las deudas de los clientes, otorgando conveniencia de pago y satisfacción de los clientes sin suministro eléctrico.

Figura 5. Zona sur del Callao.

(https://www.enel.pe/es/ayuda/hurto-de-energia.html, 2020)

En la figura se aprecia el mapa geográfico de la zona sur del Callao con sus 06 Etapas de trabajo para desarrollar el proyecto

3.2. DETERMINAR LAS PÉRDIDAS POR BALANCE DE ENERGÍA DE DISTRIBUCIÓN EN LAS SUB ESTACIONES DE LA ZONA SUR DEL CALLAO

En el desarrollo de esta metodología existen diferentes procedimientos para el análisis del cálculo que permiten detectar las perdidas técnicas y no técnicas de estudio, partiendo de los objetivos generales y específicos planteados en el proyecto, además de los recursos de información obtenidos de la empresa distribuidora Enel Perú SAA.

Las pérdidas evaluadas en la red secundaria, servirán como una guía para saber la

situación en la que se encuentra la empresa Enel Perú SAA. Estos resultados pueden variar de una red a otra, debido a diferentes factores que se señalan en el análisis.

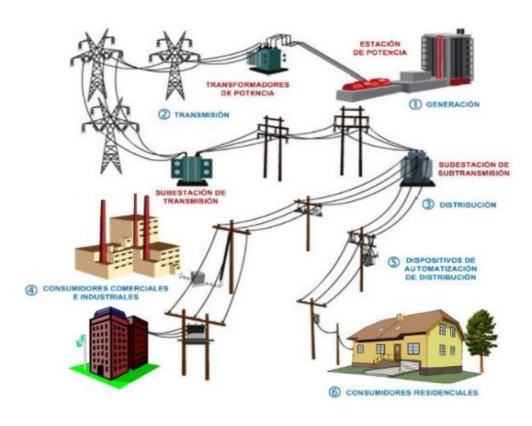


Figura 6. Sistema de Distribución

Fuente: (http://www.sectorelectricidad.com/wp-content/uploads/2018/08/traslado-de-energia.jpg, 2018)

En la figura se muestra todo el sistema de distribución desde la generación, la trasmisión y la distribución.

3.2.1 PROCEDIMIENTOS

Para reducir las pérdidas debemos tener un programa de secuencia lógica que comienza con el diagnóstico de la situación de las pérdidas de energía eléctrica en la actualidad, Para determinar los problemas existentes y las causas fundamentales de las pérdidas y establecer soluciones efectivas, también debe establecerse un sistema de medición más eficaz. Para poder determinar la situación real y objetiva para tomar en

cualquier momento con respecto a las metas establecidas, se realizará un control sistemático para la ejecución del proyecto, pues este será verificado de acuerdo al cumplimiento de los plazos y responsabilidades asumidos por el personal responsable con cada actividad encomendada, lógicamente que la solución requiere un tratamiento integral y para tal efecto es necesario un esfuerzo integral en desarrollo de todo el proyecto, teniendo como prioridad el involucrar a todo el personal, que las tareas tienen una perspectiva muy amplia, que debe orientarse a todas las áreas involucradas.

ACCIONES DE CONTROL: monitoreo contante de totalizador y redes electricas INDICADOR CONTROL RESULTADOS **EVALUACIÓN** DE EJECUCIÓN DEL SISTEMATICO ACCIONES DE REDUCCIÓN: **PERDIDAS PROYECTO EJECUCIÓN DEL** cambio de las redes con **PROYECTO DE** sistema antihurto y RENOVACIÓN DE medidores con medición **REDES ELECTRICAS CON MEDICIÓN** CONCENTRADA PATA PÚBLICIDAD: informar de las **REDUCIR LAS** concecuencias del hurto de **PERDIDAS ACCIONES DE** energia electrica. **ENTORNO** EDUCACIÓN: enseñar las formas de ahorro de energia electrica.

Figura 7. Proceso para reducir las pérdidas eléctricas

(M.Pelaez, 2020)

En la figura se muestra la manera como se puede reducir las pérdidas de energía eléctrica, que va desde la planificación la ejecución, medición y el control.

3.2.2. Medidores Multifunción totalizadores

Lo primero que debemos hacer es realizar el balance de energía de cada una de las subestaciones de la zona sur del Callao, para poder saber las perdidas no técnicas se realizan las mediciones a través de los medidores totalizadores, este un sistema que desarrolla Enel Perú SAA. Para calcular las pérdidas y este se establece mediante la medición de carga total que pasa del transformador de distribución a los usuarios finales conectados en la subestación.

Con este método podemos establecer la detección, el control y monitoreo de las perdidas no técnicas en cada una de las subestaciones en la zona sur del Callao, de esta manera podemos contribuir con la reducción de las perdidas no técnicas.

Figura 8. Medidor Multifunción Totalizador

Fuente: (enel, 2020)

En la figura se muestra el totalizador que va instalado en las sub estaciones de distribución mediante el totalizador se puede verificar las pérdidas de energía eléctrica en cada sub estación

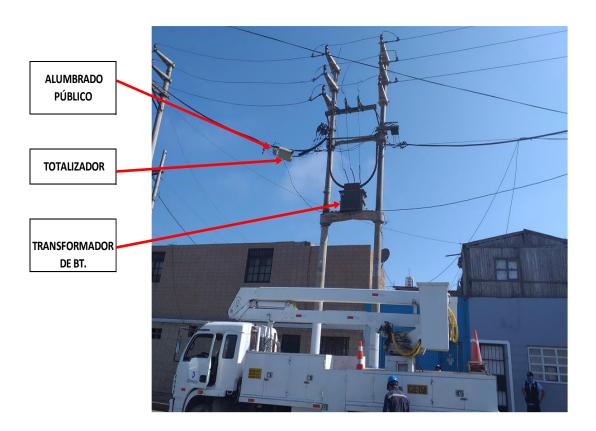


Figura 9. Ubicación actual del totalizador

(M.Pelaez, 2020)

En la figura se aprecia la situación actual de cómo está instalado el totalizador, en la zona sur del Callao, la ubicación es para evitar el contacto con personas ajenas a la empresa

3.3. MÉTODO DE REDUCCIÓN DE PERDIDAS TÉCNICAS

Seguidamente se presentan diferentes métodos de reducción para las pérdidas Técnicas, aunque algunos programas de reducción de pérdidas pueden ser muy costosos, la recuperación de esta inversión está asegurada y puede primar en el tiempo.

3.3.1. Cambio de la red matriz

Al realizar el cambio de la red matriz se varía la resistencia, de manera que se tendría una disminución de pérdidas por efecto joule, manteniendo el mismo calibre del conductor. Antes de efectuar dicho cambio se debe determinar si el conductor de la red está sobrecargado para ello se considera la energía que se consume en la red, calculando el paso de la corriente para su máxima exigencia con lo cual se verifica si es mayor o no a la capacidad nominal del conductor de la red con el fin de realizar el cambio del conductor en caso de ser necesario o en su defecto transferir clientes a otros circuitos para mejorar la carga o dividir ese circuito.

Se debe tener mucho cuidado al aplicar esta opción, ya que usualmente la mayoría veces resulta más provechoso (hablando en términos económicos) el no cambiar la red matriz conductor generaría la recuperación de energía es mínima proporción, comparada con la inversión la cual no se recuperaría de manera inmediata sino a largo plazo.

3.3.2. Rotación de Transformadores.

La rotación del transformador permite la reutilización de transformadores sub utilizados o sobre utilizados para trabajar dentro de la curvatura activa del transformador de distribución.

Esta curvatura define que la actividad en un transformador es máxima cuando la utilización de su capacidad nominal está entre un 50% y 70%, esto es, que el

transformador es menos eficiente si se carga a menos de la mitad de su capacidad o más allá del 70% de su capacidad nominal.

Para tal efecto se deberán realizar mediciones en los transformadores de distribución a fin de disponer el elemento de utilización y empezar a rotarlos en caso de ser necesario. Si bien esto es correcto desde el punto de vista teórico, no se justifica en el aspecto económico; ya que se tendría que realizar una inversión muy elevada en la compra de transformadores de distribución, con la finalidad de establecer el factor de empleo y realizar la rotación de transformadores de distribución, para reducir en menos de 1% las pérdidas en cada transformador.

3.3.3. División de sectores

A través de la división de sectores se busca ubicar el centro de carga a fin de evitar distribuir la energía eléctrica más allá de la distancia donde las pérdidas eléctricas se incrementan debido a la distancia recorrida por la corriente.

Esto se realiza midiendo las cargas en cada poste se incluye la suma de los consumos promedios mensuales de los clientes activos con ello podemos determinar en qué poste debe estar ubicado el transformador con el fin de tener las cargas de corriente lo más equilibrado posible.

3.4. MÉTODO DE REDUCCIÓN DE PERDIDAS NO TÉCNICAS.

Las pérdidas no técnicas no establecen una perdida real de la energía, estas se pueden catalogar de acuerdo a varios puntos de vista.

3.4.1. Pérdidas por administración.

Defectos en la gestión administrativa de empresas distribuidoras Por lo general, conduce a un aumento de las pérdidas no técnicas y son un reflejo de:

- Organización y eficiencia por parte de Enel Perú SAA.
- Controlar y monitorear los procesos administrativos y de gestión de la clientela, el departamento de facturación contribuye directamente e indirectamente a la reducción de las perdidas no técnicas de energía por lo cual debería ganar influencia para aminorarla. Estas pérdidas retribuyen a la energía no registrada por cuestiones de procedimiento burocrático en la compañía distribuidora como son:
- a) Errores en la medición de consumo
- b) Errores en el área administrativa tales como:
- Medidores instalados, pero no ingresados al sistema de cómputo.
- Medidores ingresados al sistema de cómputo, pero no son facturados sus consumos.

3.4.2. Pérdidas por hurto

El hurto de energía eléctrica se puede determinar como una violación intencional a las condiciones eléctricas en la red de energía eléctrica, así como también a aquellos que manipulan los cables de acometida antes de llegar al medidor. Se puede clasificar de la siguiente manera:

3.4.3. Pérdidas por conexiones clandestinas.

-Las pérdidas de energía por conexiones clandestinas son aquellas que a pesar de tener equipo de medición se conectan directamente en la red o manipulan la acometida de tal forma que esta no se registre el consumo por el medidor de energía, ocasionando de este modo perdidas de energía eléctrica a la empresa, ya que el equipo de medida no registra el consumo real y por lo tanto la facturación no es la correcta.

Figura 10. Conexión clandestina

Fuente: (M.Pelaez, 2020)

En la figura se aprecia conexiones directas a la red matriz sin la medición respectiva esto porque la caja fue retirada de forma clandestina para evitar la facturación real de los consumos, es otra forma de hurto de energía, ya que los clientes cuentan con un número de suministro activo.

3.4.4. Pérdidas por conexiones ilegales.

Son aquellas conexiones que se realizan en las redes de distribución

Sin equipo de medición correspondiente y sin autorización previa de la empresa.

En la mayoría de los casos, las conexiones se realizan sin los requerimientos técnicos de seguridad y protección para la instalación eléctrica, la experiencia con el problema de hurto de energía en los barrios, indica que el mal continuara, a menos que la empresa inicie programas agresivos de prevención de la sustracción de energía.

Las conexiones ilegales no cumplen con ninguna norma técnica y se caracterizan por conexiones realizadas con conductores inadecuados y en ocasiones con alambres pelados que pasan por paredes, techos, por el suelo y postes. Todo ello provocará enredos reales de cables en malas condiciones, lo que se deducirá en riesgo y peligro.

Figura 11. Conexión clandestina a red matriz

Fuente: (M.Pelaez, 2020)

En la figura se muestra como de manera irregular existe una conexión clandestina a la red matriz, es una conexión de forma precaria realizada por los moradores sin la autorización del concesionario hacen uso de la anergia a través del hurto esto es realizado normalmente por personas que no tienen medidor.

3.5. SELECCIÓN DE REDES SECUNDARIAS

La selección de la red secundaria es de suma importancia debido a que debe tener definidas sus límites de red, para facilitar la realización del balance por subestación y el desarrollo del cálculo detallado de sus pérdidas en los componentes que conforman.

Las 45 subestaciones seleccionadas en la zona sur del callao, son las destinadas para la detección de las subestaciones con mayores pérdidas, el

balance se utilizará para de esta manera lograr obtener los resultados precisos y detallados de las perdidas en cada subestación por lo tanto el personal de Dominion procederá a iniciar con la realización del balance de pérdidas durante los 06 primeros meses del año 2020

En las siguientes tablas se mostrarán las pérdidas de cada mes, detallados de cada SED dentro de la zona sur del Callao.

Tabla 1 Balance de pérdidas de las 45 SED mes enero 2020

		BALA	NCE DE ENER	GIA DE LA	S SED EN L	.A ZONA	SUR DEL CALL	AO MES EN	ERO		
SED	TOTALIZADOR KW	CONSUMO FACTURADO KW	ALUMBRADO PÚBLICO	PERDIDAS KW	% PERDIDAS	SED	TOTALIZADOR KW	CONSUMO FACTURADO KW	ALUMBRADO PÚBLICO	PERDIDAS KW	% PERDIDAS
003275	8388	1469.7	618.7	6299.6	75.10	14524A	3846	1430.1	135.2	2280.7	59.30
02674A	13911.6	10397.6	1400.2	2113.8	15.19	14525A	21097	6568.3	4754.49	9774.21	46.33
02675A	23053	6754	573.6	15725.4	68.21	14526A	23645	7235	654	15756	66.64
02676A	10648	7114.02	783.2	2750.78	25.83	14538A	3840	2474	150.5	1215.5	31.65
02677A	3891.6	3258	354	279.6	7.18	14539A	6264	4015.7	58.1	2190.2	34.96
02678A	13992	5729.49	648.8	7613.71	54.41	14804A	6606	2865.2	255	3485.8	52.77
02680A	10899	3251.53	433.5	7213.97	66.19	14805A	8196	2064.23	197.2	5934.57	72.41
02688A	41640	13311.83	587	27741.17	66.62	14806A	7298	4690.4	585	2022.6	27.71
02689A	50584.2	12799.12	1115.6	36669.48	72.49	14807A	7519.2	3635.8	1085.7	2797.7	37.21
02695A	23652	17202.51	3629.32	2820.17	11.92	14808A	4789	2104.8	328	2356.2	49.20
02708A	25395.12	12364.19	389	12641.93	49.78	15111A	13164	3754.8	256	9153.2	69.53
02709A	26451	18922.23	892.3	6636.47	25.09	15112A	11910	3403.6	572.9	7933.5	66.61
02710A	29646	12618.27	1645.2	15382.53	51.89	16028A	29465	12998	2286.2	14180.8	48.13
02711A	21498	9335.2	1567.5	10595.3	49.29	22030A	67504.2	11042.21	856	55605.99	82.37
02712A	25822.6	11933.67	1462.6	12426.33	48.12	22031A	11154	6466.01	469.3	4218.69	37.82
02713A	19272	7950.53	433.2	10888.27	56.50	22032A	24192	13811.18	662.6	9718.22	40.17
02769A	39756	11879.25	803	27073.75	68.10	22044A	27167.4	7449.6	1459.1	18258.7	67.21
02777A	66156	28396.5	2865	34894.5	52.75	22062A	15300	6021	386	8893	58.12
04661A	56859	28398	1567.2	26893.8	47.30	22063A	49986	16880.86	871.8	32233.34	64.48
14457A	996	242.07	156	597.93	60.03	22072A	41250	7698.32	491.3	33060.38	80.15
14458A	8802	2827.5	1301.8	4672.7	53.09	22079A	52182	31310.44	1361.3	19510.26	37.39
14459A	1596	1097.3	103	395.7	24.79	22080A	10726	6248.8	1611.4	2865.8	26.72
14460A	350	56	104	190	54.29	TOTAL	970359.92	391476.86	42920.81	535962.25	55.23

(DOMINION, 2020)

En la tabla numero 01 el cálculo de pérdidas de energía de las 45 subestaciones se puede observar que en enero del 2020 en la zona sur del Callao han generado una pérdida del 55.23%.

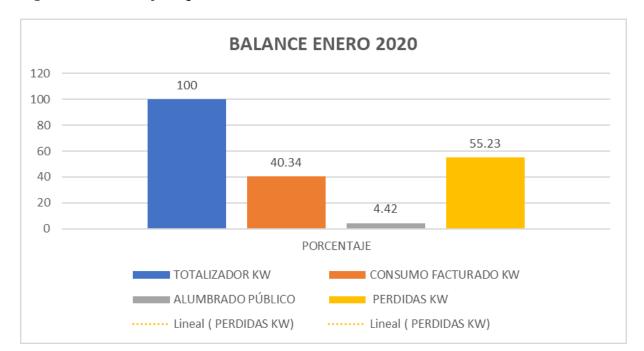


Figura 12. Porcentaje de pérdidas mes enero 2020

En la figura de barras se puede apreciar que el promedio de las pérdidas para el mes de enero representa un 55.23%, el consumo facturado representa el 40.43% y el alumbrado público representa el 4.42% en la zona sur del Callao.

Tabla 2 Balance de pérdidas de las 45 SED mes febrero (DOMINION, 2020)

		BALAN	ICE DE ENERG	GIA DE LAS	S SED EN L	A ZONA S	SUR DEL CALLA	AO MES FEB	RERO		
SED	TOTALIZADOR KW	CONSUMO FACTURADO KW	ALUMBRADO PÚBLICO	PERDIDAS KW	% PERDIDAS	SED	TOTALIZADOR KW	CONSUMO FACTURADO KW	ALUMBRADO PÚBLICO	PERDIDAS KW	% PERDIDAS
00327S	33168	6509.6	2106.9	24551.5	74.02	14524A	4568	1396.5	134.9	3036.6	66.48
02674A	16445.4	10861.61	2934.4	2649.39	16.11	14525A	8783	6800.29	608.1	1374.61	15.65
02675A	18689	9242.16	669.8	8777.04	46.96	14526A	11892	7379	348	4165	35.02
02676A	10500	6940.34	1125.3	2434.36	23.18	14538A	4804	2322.6	365.5	2115.9	44.04
02677A	4974	2939.83	685	1349.17	27.12	14539A	6480	4147.11	130.8	2202.09	33.98
02678A	15072	6854.9	889.2	7327.9	48.62	14804A	8038	4894.6	232	2911.4	36.22
02680A	10865.4	2487.37	431.9	7946.13	73.13	14805A	8286	1478.8	230.8	6576.4	79.37
02688A	49610	15205.62	765	33639.38	67.81	14806A	5220	3385.2	747	1087.8	20.84
02689A	52231.8	14551.79	812.1	36867.91	70.59	14807A	7876.8	2552.9	1159.2	4164.7	52.87
02695A	24942	15926.77	3662.5	5352.73	21.46	14808A	5367	2676.1	328	2362.9	44.03
02708A	21945	8686.51	345	12913.49	58.84	15111A	14220	4213.55	1168	8838.45	62.16
02709A	28792	18756.9	870.2	9164.9	31.83	15112A	12432	4441.1	590.9	7400	59.52
02710A	30096	13107.99	1596	15392.01	51.14	16028A	12084	10311.4	548	1224.6	10.13
02711A	23190	10310.2	1622.8	11257	48.54	22030A	78633.6	18887.16	857	58889.44	74.89
02712A	19798	10139.5	1394.5	8264	41.74	22031A	17346	8004.41	526.3	8815.29	50.82
02713A	20094	7640.19	422.6	12031.21	59.87	22032A	47012	20392.28	723.2	25896.52	55.08
02769A	39756	12131.95	776.1	26847.95	67.53	22044A	39685.8	13077.69	2531.3	24076.81	60.67
02777A	69234	30514.56	3006.2	35713.24	51.58	22062A	16068	4936.2	4329	6802.8	42.34
04661A	58997	32091.52	1819.4	25086.08	42.52	22063A	50924.4	20108.87	807.4	30008.13	58.93
14457A	978	199.8	125	653.2	66.79	22072A	42102	8109.61	446.6	33545.79	79.68
14458A	10158	3343.3	1534.9	5279.8	51.98	22079A	54588	35973.69	1411	17203.31	31.51
14459A	1686	980.9	272.3	432.8	25.67	22080A	11212.6	7555.2	1653	2004.4	17.88
14460A	397	84	120	193	48.61	TOTAL	1029241.8	432551.57	47863.1	548827.13	53.32

En la tabla numero 02 el cálculo de pérdidas de energía de las 45 subestaciones se puede observar que en febrero del 2020 en la zona sur del Callao han generado una pérdida del 53.32%.

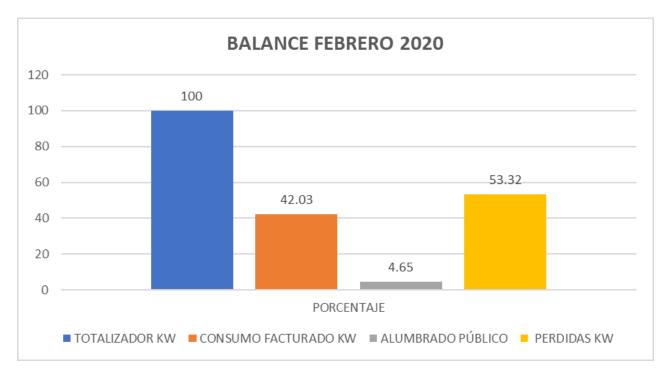


Figura 13. Porcentaje de pérdidas mes febrero 2020

En la figura de barras se puede apreciar que el promedio de las pérdidas para el mes de febrero representa un 53.32%, el consumo facturado representa el 42.03% y el alumbrado público representa el 4.65% en la zona sur del Callao.

Tabla 3 Balance de pérdidas de las 45 SED mes marzo 2020

		BALAN	NCE DE ENERO	GIA DE LA	S SED EN L	A ZONA	SUR DEL CALL	AO MES MA	ırzo		
SED	TOTALIZADOR KW	CONSUMO FACTURADO KW	ALUMBRADO PÚBLICO	PERDIDAS KW	% PERDIDAS	SED	TOTALIZADOR KW	CONSUMO FACTURADO KW	ALUMBRADO PÚBLICO	PERDIDAS KW	% PERDIDAS
00327S	22734	4102.9	1475.6	17155.5	75.46	14524A	9192.6	1551.5	147.3	7493.8	81.52
02674A	14326.8	9893.8	2412	2021	14.11	14525A	18168	7010.8	659.7	10497.5	57.78
02675A	18765	7438.44	459	10867.56	57.91	14526A	19425	8112	718	10595	54.54
02676A	9342	6399.61	948	1994.39	21.35	14538A	3348	1656.41	485	1206.59	36.04
02677A	3683.6	2802.17	315	566.43	15.38	14539A	6960	4539.89	139.9	2280.21	32.76
02678A	13452	5807.97	796.1	6847.93	50.91	14804A	6888	4030.89	378	2479.11	35.99
02680A	11883.6	4408.81	498.1	6976.69	58.71	14805A	7650	1628.8	215.3	5805.9	75.89
02688A	44990	14128.76	967	29894.24	66.45	14806A	5340	3639	475	1226	22.96
02689A	58282.8	15313.6	978	41991.2	72.05	14807A	7825.2	5325.4	1273.8	1226	15.67
02695A	27144	17070.32	4476.72	5596.96	20.62	14808A	6411	2638.4	380	3392.6	52.92
02708A	21339	14497.8	388	6453.2	30.24	15111A	15384	4722.19	547	10114.81	65.75
02709A	33194	20234	1197.2	11762.8	35.44	15112A	13998	4013.4	541	9443.6	67.46
02710A	31080	15035.22	2596.9	13447.88	43.27	16028A	13872	11626.5	780.7	1464.8	10.56
02711A	24210	10319.15	1846.2	12044.65	49.75	22030A	70507.2	11720.73	955	57831.47	82.02
02712A	28688	12573.49	1454	14660.51	51.10	22031A	15330	7278.72	368.5	7682.78	50.12
02713A	19962	7891.51	365.7	11704.79	58.64	22032A	25662	15261.61	586.8	9813.59	38.24
02769A	43824	12676.15	745.3	30402.55	69.37	22044A	13753.2	6508.6	1143	6101.6	44.36
02777A	76416	30449.78	3110.8	42855.42	56.08	22062A	16014	6673.8	585	8755.2	54.67
04661A	57421	29620.44	1568.2	26232.36	45.68	22063A	50725.23	18445.67	956.9	31322.66	61.75
14457A	1080	228	120	732	67.78	22072A	42090	7768.02	435	33886.98	80.51
14458A	6890	2989.8	676.7	3223.5	46.79	22079A	53706	24412.8	1393.1	27900.1	51.95
14459A	1596	971.8	191.2	433	27.13	22080A	10701.4	6407.4	1682.2	2611.8	24.41
14460A	389.4	76	98.2	215.2	55.26	TOTAL	1003644.03	409902.05	42530.12	551211.86	54.92

(DOMINION, 2020)

En la tabla numero 03 el cálculo de pérdidas de energía de las 45 subestaciones se puede observar que en marzo del 2020 en la zona sur del Callao han generado una pérdida del 54.92%.

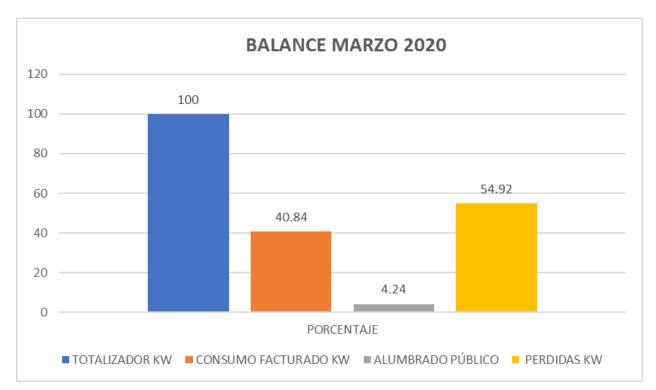


Figura 14. Porcentaje de pérdidas mes marzo 2020

En la figura de barras se puede apreciar que el promedio de las pérdidas para el mes de marzo representa un 54.92%, el consumo facturado representa el 40.84% y el alumbrado público representa el 4.24% en la zona sur del Callao.

Tabla 4 Balance de pérdidas de las 45 SED mes abril 2020

		BALA	NCE DE ENEF	RGIA DE LA	AS SED EN	LA ZONA	SUR DEL CAL	LAO MES A	BRIL		
SED	TOTALIZADOR KW	CONSUMO FACTURADO KW	ALUMBRADO PÚBLICO	PERDIDAS KW	% PERDIDAS	SED	TOTALIZADOR KW	CONSUMO FACTURADO KW	ALUMBRADO PÚBLICO	PERDIDAS KW	% PERDIDAS
00327S	21021	3536	1330.1	16154.9	76.85	14524A	4278	1466	118	2694	62.97
02674A	14997	10899	2578	1520	10.14	14525A	16478	2618	236	13624	82.68
02675A	19458	8967	450	10041	51.60	14526A	17098	6743	197	10158	59.41
02676A	11315	7420	1306	2589	22.88	14538A	3987	1639	589	1759	44.12
02677A	4892	3500	235	1157	23.65	14539A	6536	4300	185	2051	31.38
02678A	16172	6201	689	9282	57.40	14804A	6150	3315	178	2657	43.20
02680A	8567	3689	423	4455	52.00	14805A	7458	1355	195	5908	79.22
02688A	32309	14805	677	16827	52.08	14806A	5695	3818	456	1421	24.95
02689A	54489	23425	1189	29875	54.83	14807A	7914	4471	1156	2287	28.90
02695A	26075	15488	3895	6692	25.66	14808A	6815	2636	945	3234	47.45
02708A	19428	9525	651	9252	47.62	15111A	14390	4360	657	9373	65.14
02709A	39080	18489	1200	19391	49.62	15112A	14339	4150	510	9679	67.50
02710A	30998	12856	2165	15977	51.54	16028A	13290	11120	710	1460	10.99
02711A	24678	9899	1537	13242	53.66	22030A	70890	12589	886	57415	80.99
02712A	21998	10456	1149	10393	47.25	22031A	15904	6589	255	9060	56.97
02713A	21098	8004	419	12675	60.08	22032A	23884	3640	714	19530	81.77
02769A	43676	10555	704	32417	74.22	22044A	13998	5809	1455	6734	48.11
02777A	61510.01	30650	3629	27231.01	44.27	22062A	15587	4821	1257	9509	61.01
04661A	45879	22934	1689	21256	46.33	22063A	51890	19834	834	31222	60.17
14457A	1905	289	145	1471	77.22	22072A	43005	15325	377	27303	63.49
14458A	10931	3155	2250	5526	50.55	22079A	45890	22089	1452	22349	48.70
14459A	1890	1208	125	557	29.47	22080A	10995	6368	1356	3271	29.75
14460A	395	78	110	207	52.41	TOTAL	949232.01	385083	43263.1	520885.91	54.87

(DOMINION, 2020)

En la tabla numero 04 el cálculo de pérdidas de energía de las 45 subestaciones se puede observar que en abril del 2020 en la zona sur del Callao han generado una pérdida del 54.87%.

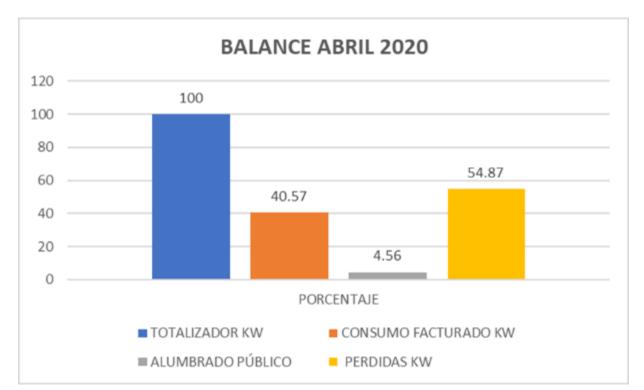


Figura 15. Porcentaje de pérdidas mes abril 2020

En la figura de barras se puede apreciar que el promedio de las pérdidas para el mes de abril representa un 54.87%, el consumo facturado representa el 40.57% y el alumbrado público representa el 4.56% en la zona sur del Callao.

Tabla 5 Balance de pérdidas de las 45 SED mes mayo 2020

		BALA	NCE DE ENER	GIA DE LA	S SED EN	LA ZONA	SUR DEL CALI	LAO MES MA	AYO	•	
SED	TOTALIZADOR KW	CONSUMO FACTURADO KW	ALUMBRADO PÚBLICO	PERDIDAS KW	% PERDIDAS	SED	TOTALIZADOR KW	CONSUMO FACTURADO KW	ALUMBRADO PÚBLICO	PERDIDAS KW	% PERDIDAS
00327S	22043	3498	1570	16975	77.01	14524A	4618	1521	139	2958	64.05
02674A	15089	11876	2657	556	3.68	14525A	16887	2709	278	13900	82.31
02675A	18378	8755	441	9182	49.96	14526A	18002	6598	218	11186	62.14
02676A	11621	7409	1230	2982	25.66	14538A	3789	1530	654	1605	42.36
02677A	5110	3789	389	932	18.24	14539A	6742	4233	175	2334	34.62
02678A	16482	6754	756	8972	54.44	14804A	6546	3325	219	3002	45.86
02680A	11244	3278	456	7510	66.79	14805A	7549	1428	224	5897	78.12
02688A	33056	14300	690	18066	54.65	14806A	5800	3621	489	1690	29.14
02689A	53867	22089	1023	30755	57.09	14807A	7589	4529	1200	1860	24.51
02695A	25534	16083	4200	5251	20.56	14808A	6882	2467	892	3523	51.19
02708A	21345	9966	715	10664	49.96	15111A	14316	4377	243	9696	67.73
02709A	38457	18499	1159	18799	48.88	15112A	14489	4300	570	9619	66.39
02710A	31067	13045	2210	15812	50.90	16028A	13345	11020	720	1605	12.03
02711A	25234	10900	1678	12656	50.15	22030A	65723	12856	992	51875	78.93
02712A	23016	10866	1201	10949	47.57	22031A	15200	6780	262	8158	53.67
02713A	20222	8542	388	11292	55.84	22032A	25560	3945	789	20826	81.48
02769A	42890	10911	720	31259	72.88	22044A	14344	5527	1500	7317	51.01
02777A	67456	30345	3751	33360	49.45	22062A	17025	4895	1185.9	10944.1	64.28
04661A	41887	21006	1581	19300	46.08	22063A	53082	20347	881	31854	60.01
14457A	1818	245	112	1461	80.36	22072A	42089	14588	359	27142	64.49
14458A	10455	3489	2190	4776	45.68	22079A	45891	21003	1409	23479	51.16
14459A	1731	1150	138	443	25.59	22080A	10098	6002	1703	2393	23.70
14460A	388	65	103	220	56.70	TOTAL	953956	384461	44459.9	525035.1	55.04

(DOMINION, 2020)

En la tabla numero 05 el cálculo de pérdidas de energía de las 45 subestaciones se puede observar que en mayo del 2020 en la zona sur del Callao han generado una pérdida del 55.04%.

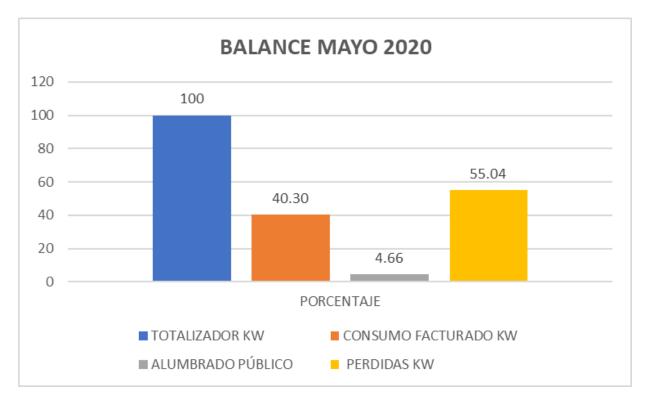


Figura 16. Porcentaje de pérdidas mes mayo 2020

En la figura de barras se puede apreciar que el promedio de las pérdidas para el mes de mayo representa un 55.04%, el consumo facturado representa el 40.30% y el alumbrado público representa el 4.66% en la zona sur del Callao.

Tabla 6 Balance de pérdidas se las 45 SED mes junio 2020

	•	BALA	NCE DE ENEF	RGIA DE LA	AS SED EN	LA ZONA	SUR DEL CAL	LAO MES JU	NIO		
SED	TOTALIZADOR KW	CONSUMO FACTURADO KW	ALUMBRADO PÚBLICO	PERDIDAS KW	% PERDIDAS	SED	TOTALIZADOR KW	CONSUMO FACTURADO KW	ALUMBRADO PÚBLICO	PERDIDAS KW	% PERDIDAS
00327S	24006	3565.04	1806.2	18634.76	77.63	14524A	4497.6	2041.8	185	2270.8	50.49
02674A	14265.6	9561.12	2591.6	2112.88	14.81	14525A	17352	7098.46	656.2	9597.34	55.31
02675A	19456	6863.31	1006.31	11586.38	59.55	14526A	13780	4576	391	8813	63.96
02676A	9222	6412.4	1090.8	1718.8	18.64	14538A	4332	1733.7	595.9	2002.4	46.22
02677A	3667.4	2816.09	287	564.31	15.39	14539A	7982	4300.2	328	3353.8	42.02
02678A	16200	6083.8	683.1	9433.1	58.23	14804A	8990	4805.13	450	3734.87	41.54
02680A	12858	4021.4	321.6	8515	66.22	14805A	7524.9	1342.3	258.8	5923.8	78.72
02688A	44420	15343.26	883	28193.74	63.47	14806A	5136	3649.3	428.5	1058.2	20.60
02689A	59037	16679.68	1150	41207.32	69.80	14807A	9066	4184.2	698	4183.8	46.15
02695A	22950	17101.07	4102.76	1746.17	7.61	14808A	7356	3062.7	1154.8	3138.5	42.67
02708A	32089	15522.4	765	15801.6	49.24	15111A	15381.61	4100.39	3520	7761.22	50.46
02709A	36255	22408.1	1348.3	12498.6	34.47	15112A	16116	4066.91	538	11511.09	71.43
02710A	33492	13591.19	2257.7	17643.11	52.68	16028A	20062	16462.1	824.9	2775	13.83
02711A	22386	9707.03	1608.7	11070.27	49.45	22030A	74722.2	11123.91	927	62671.29	83.87
02712A	21017	11771.9	1592.3	7652.8	36.41	22031A	55844	24658	1150	30036	53.79
02713A	19170	5742.66	300.6	13126.74	68.48	22032A	28002	13074.69	748.5	14178.81	50.63
02769A	40710	13885.37	590.2	26234.43	64.44	22044A	15387.6	4873.29	1435.2	9079.11	59.00
02777A	71389	31906.23	5299.2	34183.57	47.88	22062A	17280	5123.64	3875.5	8280.86	47.92
04661A	68578	40303.88	1529.9	26744.22	39.00	22063A	52410.6	17345.4	708.2	34357	65.55
14457A	984.6	214.6	122	648	65.81	22072A	40116	7686.79	349.6	32079.61	79.97
14458A	7567	2957.3	1826.9	2782.8	36.78	22079A	44928	25981.2	1636.5	17310.3	38.53
14459A	1512	1064.1	156	291.9	19.31	22080A	10558	6253.6	1750.8	2553.6	24.19
14460A	396	65	115	216	54.55	TOTAL	1058452.11	435130.64	54044.57	569276.9	53.78

(DOMINION, 2020)

En la tabla numero 06 el cálculo de pérdidas de energía de las 45 subestaciones se puede observar que en junio del 2020 en la zona sur del Callao han generado una pérdida del 53.78%.

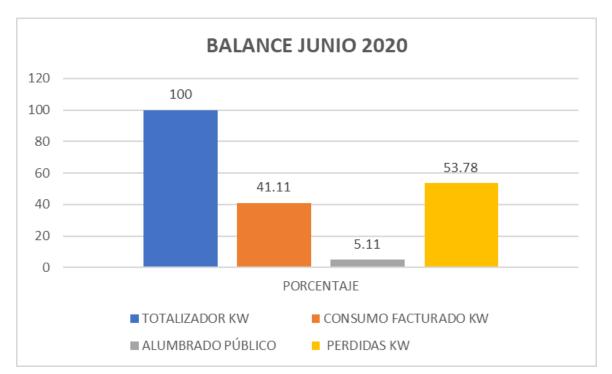


Figura 17. Porcentaje de pérdidas mes junio 2020

En la figura de barras se puede apreciar que el promedio de las pérdidas para el mes de junio representa un 53.78%, el consumo facturado representa el 41.11% y el alumbrado público representa el 5.11% en la zona sur del Callao.

Tabla 7 Balance de perdidas mensuales de enero a junio 2020 en las 45 SED de la zona sur del Callao

PROMEDIC	MEDIO DE PERDIDAS DE ENERO A JUNIO EN LA ZONA SUR DEL CALLAO AÑO 2020								
MES	TOTALIZADOR KW	CONSUMO FACTURADO KW	ALUMBRADO PÚBLICO KW	PERDIDAS KW	% PERDIDAS				
ENERO	970359.92	391476.86	42920.81	535962.25	55.23				
FEBRERO	1029241.80	432551.57	47863.10	548827.13	53.32				
MARZO	1003644.03	409902.05	42530.12	551211.86	54.92				
ABRIL	949232.01	385083.00	43263.10	520885.91	54.87				
MAYO	953956.00	384461.00	44459.90	525035.10	55.04				
JUNIO	1058452.11	435130.64	54044.57	569276.90	53.78				
PROMEDIO	994147.65	406434.19	45846.93	541866.53	54.53				

En la tabla se muestra las pérdidas de energía durante los primeros seis meses del año 2020.

Con las evidencias del promedio de pérdidas de energía de los meses enero, febrero, marzo, abril, mayo y junio del año 2020 y como promedio entre los 06 primeros meses las pérdidas ascienden 54.53%.

Con la información que se tiene vamos a pasar a la siguiente etapa que es la selección de subestaciones con mayor índice de pérdidas de energía de las cuales hemos seleccionado 37 de las 45 en la zona sur del Callao, para la renovación de la red matriz, acometidas Anti hurto y al cambio de medidores con medición concentrada con nueva tecnología

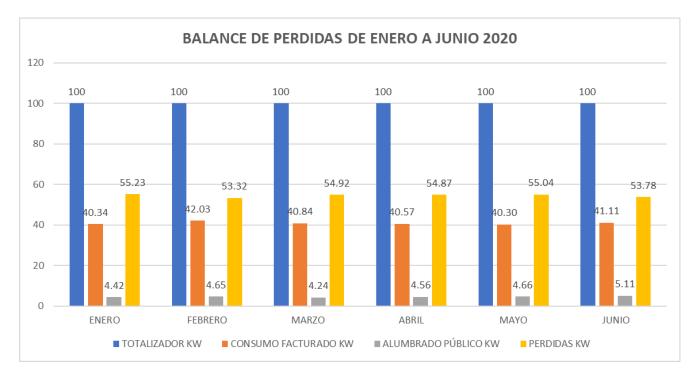


Figura 18. Porcentaje de pérdidas mes junio 2020

En la figura de barras se puede apreciar que las pérdidas representan en promedio total, en los seis meses primeros meses del año 2020 analizados, dado que en enero se ha calculado una pérdida de 55.23%, febrero 53.32%, marzo 54.92% y abril 54.87%, mayo 55.04% y junio 53.78% siendo así se puede determinar que las pérdidas se mantienen en un promedio 54.53% durante los seis primeros meses, sin tendencia a disminuir.

Tabla 8. SED seleccionadas para la renovación de redes con medición concentrada

SED SELECCIONADAS PARA LA RENOVACIÓN DE REDES EN LA ZONA SUR DEL CALLAO									
S.E.	RESIDENCIAL	COMERCIAL	INDUSTRIAL	OTROS	TOTAL CLIENT				
00327S	54				54				
02675A	90				90				
02678A	87				87				
02680A	37	1			38				
02688A	102	2			104				
02689A	169				169				
02708A	44			1	45				
02709A	155			1	156				
02710A	134				134				
02711A	107				107				
02712A	95				95				
02713A	80				80				
02769A	118				118				
02777A	214				214				
04661A	141			1	142				
14457A	3				3				
14458A	27				27				
14460A	1				1				
14524A	9				9				
14525A	47				47				
14526A	17				17				
14538A	16				16				
14539A	16			1	17				
14804A	37				37				
14805A	28				28				
14807A	31				31				
14808A	29				29				
15111A	40			1	41				
15112A	30				30				
22030A	173				173				
22031A	114				114				
22032A	114				114				
22044A	80	1	1	1	83				
22062A	50				50				
22063A	147				147				
22072A	85				85				
22079A	163	20			183				
		TOTAL CLIENTES			3335				

En la tabla se muestran las 37 subestaciones seleccionadas para iniciar el proyecto de renovación de redes con medición concentrada en la zona sur del

Callao, la evaluación de las 37 Subestaciones la realizo Enel Perú SAA. De acuerdo a sus propios criterios de evaluación de pérdidas de energía

3.5.1. Cable auto soportado:

El cable auto soportado o cable matriz que se utilizara para el proyecto ofrece la resistencia a la tracción necesaria en este tipo de instalaciones, un material que aporta excelentes propiedades mecánicas de tracción, manteniendo un peso muy ligero, el cable saldrá desde del transformador y alimentara a todas las cajas concentradoras esto se ejecutará en las 37 subestaciones seleccionadas para realizar la renovación de redes Matriz

Cumple con las Normas Nacionales:

NTP-IEC 60228: Conductores para cables aislados.

NTP 370.254: Cables para distribución aérea autosoportados aislados con XLPE para tensiones hasta e inclusive 0,6/1 kV.

NTP 370.258: Conductores con alambres redondos de aluminio cableados concéntricamente para líneas aéreas.

Además también cumple con las normas internacionales:

IEC 60228: Conductores para cables aislados.

IEC 60811-201: Medición del espesor de aislamiento.

IEC 60811-401: Métodos de envejecimiento térmico. Envejecimiento en horno de aire.

IEC 60811-402: Ensayo de absorción de agua.

IEC 60811-501: Ensayo para determinar las propiedades mecánicas del aislamiento y cubierta.

IEC 60811-502: Ensayo de contracción para aislamientos.

IEC 60811-507: Ensayo de alargamiento en caliente para materiales reticulados.

IEC 60811-511: Medición del índice de fluidez en caliente de los compuestos de polietileno. (indeco, 2020)

MDECO SA CANI

Figura 19. Cable Auto soportado o red matriz para el proyecto

Fuente: (indeco, 2020)

En la figura se muestra el cable auto soportado que se usara para el proyecto, como red matriz de baja tensión, este cable va desde la sub estación de distribución y alimenta a todas las cajas concentradoras.

Figura 20. Cable matriz Auto soportado y acometida que se cambiara en el proyecto

En la figura se aprecia la instalación actual del cable auto soportado o red matriz y el cable de acometida convencional, ambos serán cambiados la matriz por deterioro de conexiones clandestina y la cometida para evitar la manipulación de las acometidas.

3.5.2. Cable Acometida tipo concéntrico anti fraude.

Este tipo de cable especial para acometidas aéreas está diseñado para evitar el hurto de energía eléctrica, el diseño de los conductores estañados más cinta poliéster metalizada conforma un circuito de detección ante el hurto de energía eléctrica. Funciona cuando el cliente o hurtador intente manipular la acometida, este cable de forma automática emite una señal al medidor y este corta el

servicio para evitar cualquier tipo de accidentes por corto circuito o explosiones por sobrecarga, este no se volverá activar hasta que se repare o cambie el cable anti fraude.

Cumple con las normas técnicas internacionales:

IEC 60228: Conductores para cables aislados.

DNN-ET-251 Rev.02: Cable concéntrico de cobre anti hurto con protección de cinta poliéster metalizada.

IEC 60502-1: Cables de energía con aislamiento extruido y sus aplicaciones para tensiones nominales desde 1 kV y 3 kV.

IEC 60332-1-2: Ensayo de propagación de llama vertical para un alambre o cable simple - Procedimiento para llama pre mezclada de 1kW.

IEC 60811-401: Métodos de envejecimiento térmico. Envejecimiento en horno de aire.

IEC 60811-402: Ensayo de absorción de agua.

IEC 60811-409: Ensayo de pérdida de masa de aislamientos y cubiertas termoplásticas.

IEC 60811-501: Ensayos para la determinación de las propiedades mecánicas.

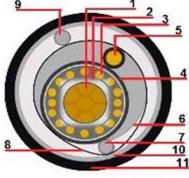
IEC 60811-502: Ensayo de contracción para aislamientos.

IEC 60811-504: Ensayo de doblado a baja temperatura para aislamientos y cubiertas.

IEC 60811-505: Elongación a baja temperatura para aislamientos y cubiertas.

IEC 60811-506: Ensayo de impacto a baja temperatura para aislamientos y cubiertas.

IEC 60811-507: Ensayo de alargamiento en caliente para materiales reticulables.


IEC 60811-508: Ensayo de presión a alta temperatura para aislamientos y cubiertas.

IEC 60811-509: Ensayo de resistencia al agrietamiento para aislamientos y cubiertas.

ICEA S-95-658: Cables de distribución de tensión nominal hasta 2000 V. sección 6.4.2: Ensayo de inmersión en aceite.

UL 2556: Métodos de ensayo para alambre y cable. Sección 4.2.8.5: Ensayo de resistencia a los rayos solares en arco xenon/arco carbón. Sección 9.3: Ensayo de propagación de llama -FT1 (muestra vertical). (indeco, 2020)

Figura 21. Cable de acometida antifraude para el proyecto

Fuente: (indeco, 2020)

En la figura se muestra el nuevo cable tipo antifraude que se usara como acometida.

Conductor Central 2,5 mm2:

- 1. Cobre blando comprimido, clase 2.
- 2. Aislamiento Cond. Central: Polietileno reticulado XLPE.
- 3. Conductor Concéntrico 2,5 mm2: Alambres de cobre colocados helicoidalmente. Recubrimiento 65.8%, 19 alambres de 0,4 mm de diámetro cada alambre.
- 4. Cubierta interna: Compuesto de PVC.
- 5. Conductor Piloto Aislado 0,5 mm2: Cobre blando, clase 2 PVC.
- 6. Cinta: Poliéster metalizada.
- 7. 1er Conductor Tierra 0,5 mm2: Cobre Estañado.
- 8. Cinta: Poliéster.
- 9. 2do Conductor Tierra 0,5 mm2: Cobre Estañado.
- 10. Cinta: Poliéster metalizada.
- 11. Cubierta externa: Compuesto de PVC.

(indeco, 2020)

3.5.3. CAMBIO DE MEDIDORES CON NUEVAS TECNOLOGÍAS

Las nuevas tecnologías de medición existen con la intención de reducir las pérdidas especialmente en los sistemas de distribución, en la actualidad

existen empresas que han implementado diversos sistemas de medición como ENOSA, HIDRANDINA, SEAL, etc. Además, cuentan con el apoyo del ministerio de energía y minas para el desarrollo óptimo del sistema eléctrico en el Perú.

3.5.4. ANÁLISIS DEL SISTEMA DE MEDICIÓN ACTUAL

El sistema de medición actual en la zona Sur del Callao es un sistema de distribución área mixta (DAM) que consta de una caja concentradora con capacidad para nueve módulos de medida y un colector ubicado en un poste de 15 metros de altura dentro de la caja se ubica el módulo de medida del cliente que registra el consumo que realiza mensualmente el cual no puede ser manipulado por la dificultad de ubicación y la altura, en la fachada del cliente se ubica una caja con un display el cual sirve como visualizador para que el cliente pueda saber el consumo que registra su medidor con este sistema de distribución aérea mixta Enel Puede tomar lectura a distancia cortar y reconectar el problema que presenta en la actualidad es que la comunicación que existe entre la plataforma de Enel y el colector de datos no está funcionando de la mejor manera por problemas internos de conexión y fallas en los equipos de medición por tal motivo muchas veces no se puede extraer las lecturas de los clientes no se puede hacer corte y reconexión seguidamente se detalla las funciones de cada componente:

3.5.5. CAJA CONCENTRADORA

La caja concentradora está diseñada de un material polimérico resistente al medio ambiente y está compuesta de 09 módulos de medida y 01 módulo de cabecera.

BARRA DE LIMENTACIÓN PARA LOS MÓDULOS 1 MÓDULO CABECERA MÓDULOS DE MEDIDA CAJA CONCENTRADORA CABLES DE CONTROL PARA CABLE DE ALIMENTACION A LA LECTURA, CORTE Y RECONEXION CAJA CONCENTRADORA BORNERAS DE CONEXIÓN **ENTRADA DE ACOMETIDAS**

Figura 22. Instalación de la caja concentrado actual.

(M.Pelaez, 2020)

En la figura se muestra la caja concentradora actual con todos sus componentes se pueden ver los módulos de medida, el módulo cabecera que constantemente en la parte izquierda y se comunica con los demas modulos mediante los cables de control.

3.5.5.1. Módulo de Medida.

Este dispositivo es el medidor de energía eléctrica del cliente el cual almacena los consumos realizados a diario por el cliente, esta anotación

sirve para emanar las facturas a lo largo del ciclo de facturación los problemas que presenta en la actualidad es que las borneras están quemadas, se están sulfatadas o los módulos se dañan internamente y esto es un problema pues impide el envío de la información y esto puede causar consumos cero en la facturación o corte del servicio eléctrico que son los que aumentan las perdidas no técnicas.

Figura 23. Módulo de medida

(M.Pelaez, 2020)

En la figura se aprecia el módulo de medida que se utiliza como medidor del cliente ubicado en la caja concentradora en el poste a 15 metros de altura.

3.5.5.2. Modulo Cabecera PLC.

Este dispositivo es el que almacena el registro de los 09 módulos de medida y trasmite la información de los 09 módulos al Colector los problemas que presentan en la actualidad es que igual que los módulos de medida las borneras se sulfatan se dañan internamente o las conexiones entre los módulos y la cabecera están seccionados esto es más perjudicial pues al fallar la comunicación entre los módulos y la cabecera son 09 los clientes afectados, por consumos cero o por cortes a los 09 predios.

Figura 24. Módulo de cabecera PLC

(M.Pelaez, 2020)

En la figura se aprecia el módulo de cabecera PLC que es el encargado de recolectar la información de los 09 módulos de medida.

3.5.5.3. Colector de Datos

El colector de datos va en una caja aparte es el que se encarga de recopilar la información de todas las cabeceras asociadas a la sub estación este colector se actualiza de forma automática cada 20 minutos por lo tanto el colector toma la información de todos los clientes asociados a la subestación y toda está información viaja a través de la red de datos mediante el modem.

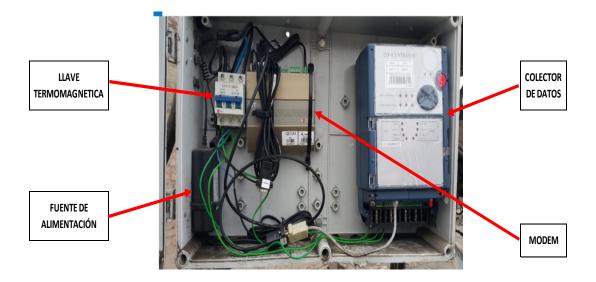


Figura 25. Colector de datos y modem

Fuente: (M.Pelaez, 2020)

En la figura se aprecia el colector de datos y el modem, estos se ubican dentro de una caja concentradora pero ubicado en un poste diferente de los demás por lo general en el poste más cercano a la sub estación.

3.5.5.4. Display

Es un aparato electrónico o pantalla donde se muestra la lectura que se va registrando en el módulo de medida esto se actualiza automáticamente cada 20 minutos y el cliente puede ver el consumo que va realizando durante el día o en cualquier momento que desea visualizar su lectura.

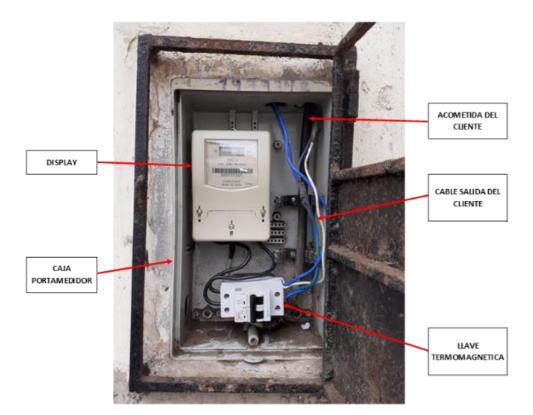


Figura 26. Medidor desplaye ubicado en la fachada del cliente

En la figura se aprecia el display ubicado en la fachada del cliente, su función es de mostrar el consumo acumulado del módulo de medida que se ubica en la caja concentradora en el poste a 15 metros de altura.

COLECTOR DE DATOS Y
MODEM

CAJA PORTA
MEDIDOR
CON DISPLAY

Figura 27. Funcionamiento del sistema DAM (distribución aérea mixta)

(M.Pelaez, 2020)

En la figura se muestra como funciona actualmente el sistema de medición, se aprecia la red matriz, el poste de 15 metros con la caja concentradora, el cable

de acometida que sale de caja, la caja porta display y en el siguiente poste se ubica la caja concentradora con el colector y modem.

3.6. NUEVO SISTEMA DE MEDICIÓN CONCENTRADA PROPUESTO

La nueva caja concentradora estará con acondicionamiento para 09 módulos de medida además contara con un interruptor termomagnético para proteger los falsos contactos y sobre calentamientos por el ingreso de la corriente, los nuevos medidores que se utilizaran en el proyecto DAM, son módulos de medida que viene incorporado con un display, estos no tendrán un módulo de cabecera la comunicación entre el módulo y el colector de datos será mediante la red, ya que la nueva tecnología permite una comunicación más efectiva por lo tanto se evitara las conexiones internas, los cables de control que antes se hacían además la actualización de datos será en tiempo real y no se tendrá que esperar 20 minutos esa serían las ventajas que ofrecen los nuevos módulos de medida.

MÓDULOS DE
MEDIDA CON
DISPLAY
INCORPORADO

LLAVE
TERMOMAGNETICA

CAJA
CONCENTRADORA

BARRA PARA
TENSIONAR LOS
MODULOS

BORNERAS
UNIPOLARES

Figura 28. Propuesta de nueva caja concentradora

(enel, 2020)

En la figura se aprecia el diseño de la nueva caja concentradora en la cual solo van nueve módulos de medida con pantalla para visualizar la lectura del cliente y a la vez compara con la lectura del display, no necesitan cables de control, no necesita módulo de cabecera porque la comunicación es por la red son módulos de medida con tecnología más avanzada.

3.6.1. Nuevo Módulo de Medida.

Principio de Funcionamiento:

Este medidor puede medir el consumo de energía activa con el circuito integrado especial a gran escala en el interior, utilizar las líneas eléctricas de baja tensión como canal de comunicación y transmitir los datos de consumo de energía al concentrador a través de las líneas eléctricas. Las características son las siguientes:

El medidor cumple con los requisitos especificados en IEC 62052-11 e IEC 62053-21

Lectura automática de contadores.

Uso de tecnología de comunicación en el software para implementar la interconexión entre los dispositivos a través de las líneas eléctricas con capacidad de comunicación precisa y confiable.

Relé automático entre sí.

Estructura simple con circuito integrado especial a gran escala en el interior.

Control de relé remoto para encender / apagar, función de electricidad a prueba de manipulaciones. (ELECTRICAL, 2020)

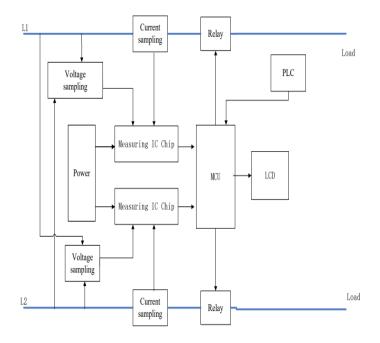


Figura 29. Diagrama de conexión Módulo de medida con display.

(ELECTRICAL, 2020)

Figura 30. Nuevo Módulo con Display

(ELECTRICAL, 2020)

3.6.2. Nuevos tableros de distribución

Los nuevos tableros de distribución serán más compactos, ya que estos albergarán el módulo de Alumbrado Público, el medidor multifunción totalizador y el colector de datos estos estarán dentro de la nueva caja de distribución este cuenta con un sensor de apertura en la puerta, de esta manera no podrá ser manipulado por personas ajenas a la empresa, ya que a la apertura de la puerta estas envían una señal a la plataforma de Enel Perú SAA. Y eso alertará para que se pueda evitar las manipulaciones.

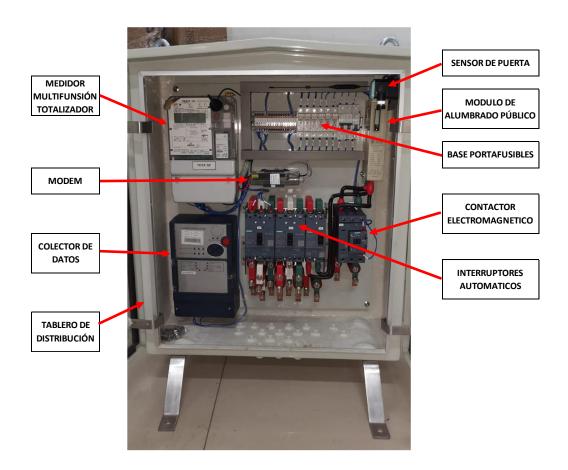


Figura 31. Propuesta de Tablero de Distribución

(enel, 2020)

En la figura se aprecia la propuesta del nuevo tablero de distribución que cuenta con un sensor de apertura en la puerta para evitar que personas ajenas a la empresa la puedan manipular todo el sistema de medición se encuentra incorporado dentro del tablero.

Figura 32. Tablero de distribución con sensor de apertura de puerta

(enel, 2020)

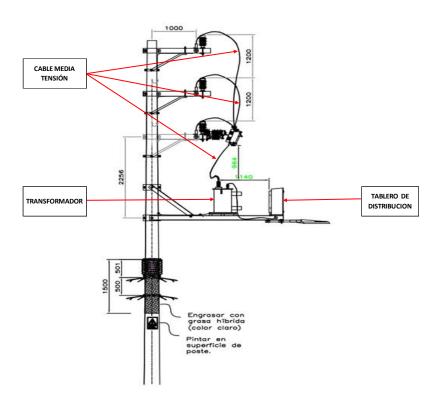
En la figura se muestra el tablero de distribución con la puerta cerrada que se ubicara en el mismo poste del transformador de distribución.

3.7. ENFOQUE DE SOLUCIÓN DEL PROBLEMA.

Debido a las diversas problemáticas observadas durante la realización del balance energía, las actividades a tomar en cuenta con la empresa Dominion Perú SAC,

Al analizar las pérdidas, se establece que las pérdidas son el resultado de una serie de causas. Estos deberían ser analizados para hallar las verdaderas raíces de las deficiencias que se observan para dar soluciones adecuadas.

La reducción de pérdidas para cualquier proyecto tiene una valoración importante en el que intervienen varios factores, son proyectos que deben ser tomados en consideración con mucha prioridad, estos proyectos deben ser de Índole consistente y dirigidos a toda el área de concesión que administra.

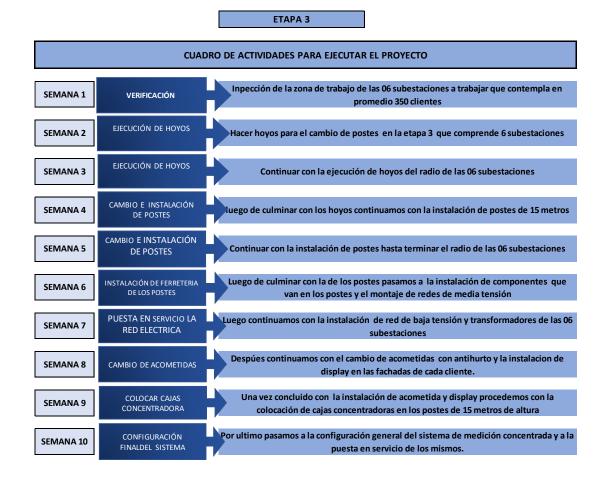

Involucra tener redes de distribución en óptimas condiciones de trabajo, un sistema de medición para el consumo con tecnología más avanzada y eficiente un sistema de iluminación con lámparas led con mayor tecnología y menos consumo de energía eléctrica, para ello Dominion Perú SAC. Cuenta con recursos humanos competente para lograr incrementar el proyecto empezando con la renovación de redes Matriz, movimiento y modificación de transformadores, renovación de nuevas luminarias tipo led, cambio de acometidas con sistema anti hurto para evitar las conexiones irregulares ocultas y la incorporación de medidores con medición concentrada con nueva tecnología que nos ofrece la toma de lectura a distancia corte y reconexión y el bloqueo del servicio ante el intento de manipulación del cable acometida los beneficios que obtendrá Enel Perú SAA con el cambio de estos serán muchos:

El principal la reducción de perdidas no técnicas, mejorar la calidad del servicio, en tal sentido menos interrupciones por manipulación de los cables, reducción del personal para tomar lectura, para cortes y reconexión, por otra parte, se podrán

reincorporar clientes con compromiso de deuda pendientes e incorporar nuevos clientes frente a la ausencia del fluido eléctrico.

El factor más importante para el éxito de este proyecto de control, reducción y monitoreo de pérdidas es la participación de la INGENIERÍA DE DISTRIBUCIÓN, pues no solo es determinante para el control de las pérdidas, como es evidente, sino que permite la generación de índices que son la base para el monitoreo de los resultados de las acciones que se ejecuten para reducir pérdidas no técnicas.

Figura 33. Poste de 15 metros de altura con soporte de transformador de distribución que incluye tablero de distribución


(enel, 2020)

En la figura se puede aprecia el poste de 15 metros de altura con base tipo plataforma donde se instalara el transformador de distribución y el tablero de distribución adicional a esto se puede apreciar un sistema anti escalamiento para evitar que personas ajenas a la empresa puedan manipular los equipos.

3.8. CRONOGRAMA DE ACTIVIDADES

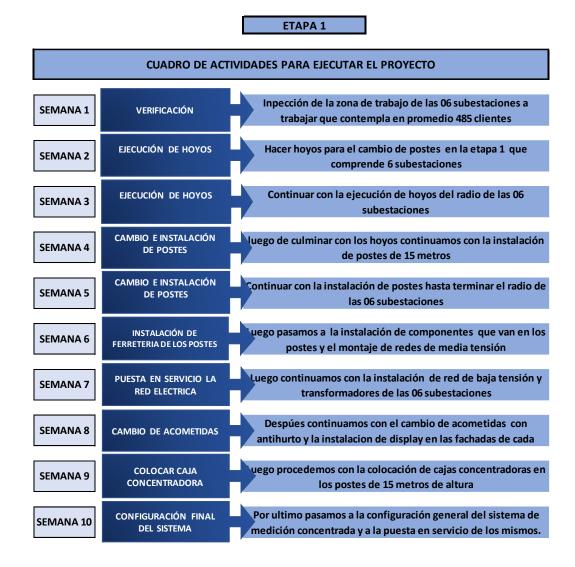
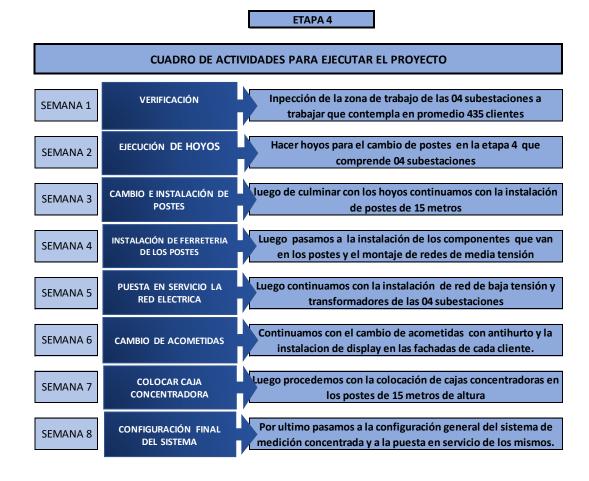

Con los resultados obtenidos del balance de las subestaciones de distribución y la decisión por parte de Enel Perú SAA.de ejecutar el proyecto, se plantea dividir el proyecto en 06 Etapas el cronograma sugerido por Dominion Perú es que se ejecute de acuerdo a la ubicación geográfica del proyecto de la siguiente manera:

Figura 34. Actividades a desarrollarse en la etapa 03 del proyecto.

Según el proyecto y por ubicación geográfica se debe empezar por la etapa 03 que consta de 06 subestaciones de distribución y 350 clientes activos, la ejecución de la Etapa 03 tiene un tiempo de duración de 10 semanas o un promedio de 75 días calendarios desde la fecha de inicio hasta su finalización.

Figura 35. Actividades a desarrollarse en la etapa 01 del proyecto.

Después de la Etapa 03 se continúa con la Etapa 01 que consta de 06 subestaciones de distribución y 485 clientes activos, la ejecución de la Etapa 01 tiene un tiempo de duración de 10 semanas o un promedio de 75 días calendarios desde la fecha de inicio hasta su finalización.


Figura 36. Actividades a desarrollarse en la etapa 02 del proyecto.

ETAPA 2 **CUADRO DE ACTIVIDADES PARA EJECUTAR EL PROYECTO** Inpección de la zona de trabajo de las 07 subestaciones a VERIFICACIÓN **SEMANA 1** trabajar que contempla en promedio 723 clientes Hacer hoyos para el cambio de postes en la etapa 2 que **EJECUCIÓN DE HOYOS SEMANA 2** comprende 6 subestaciones Continuar con la ejecución de hoyos del radio de las 07 **EJECUCIÓN DE HOYOS SEMANA 3** subestaciones CAMBIO E INSTALACIÓN luego de culminar con los hoyos continuamos con la instalación **DE POSTES SEMANA 4** de postes de 15 metros CAMBIO E INSTALACIÓN Continuar con la instalación de postes hasta terminar el radio de **DE POSTES SEMANA 5** las 07 subestaciones Luego pasamos a la instalación de componentes que van en los INSTALACIÓN DE FERRETERIA **DE LOS POSTES SEMANA 6** postes y el montaje de redes de media tensión Luego continuamos con la instalación de red de baja tensión y PUESTA EN SERVICIO LA **RED ELECTRICA SEMANA 7** transformadores de las 07 subestaciones Despúes continuamos con el cambio de acometidas con CAMBIO DE ACOMETIDAS **SEMANA 8** antihurto y la instalacion de display en las fachadas de cada Continuamos con el cambio de acometidas con antihurto y la **CAMBIO DE ACOMETIDAS SEMANA 9** instalacion de display en las fachadas de cada cliente. uego procedemos con la colocación de cajas concentradoras en **COLOCAR CAJA SEMANA 10** CONCENTRADORA los postes de 15 metros de altura Por ultimo pasamos a la configuración general del sistema de CONFIGURACIÓN FINAL **SEMANA 11 DEL SISTEMA** medición concentrada y a la puesta en servicio de los mismos.

(M.Pelaez, 2020)

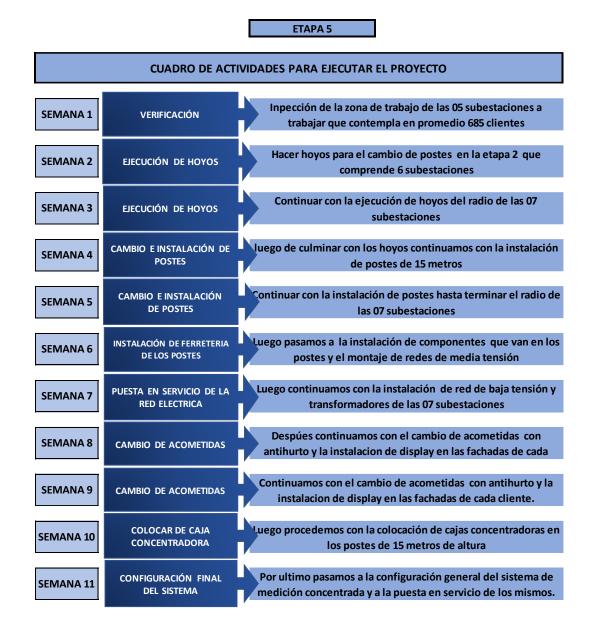

Después de la Etapa 01 se continúa con la Etapa 02 que consta de 07 subestaciones de distribución y 723 clientes activos, la ejecución de la Etapa 02 tiene un tiempo de duración de 11 semanas o un promedio de 81 días calendarios desde la fecha de inicio hasta su finalización.

Figura 37. Actividades a desarrollarse en la etapa 04 del proyecto.

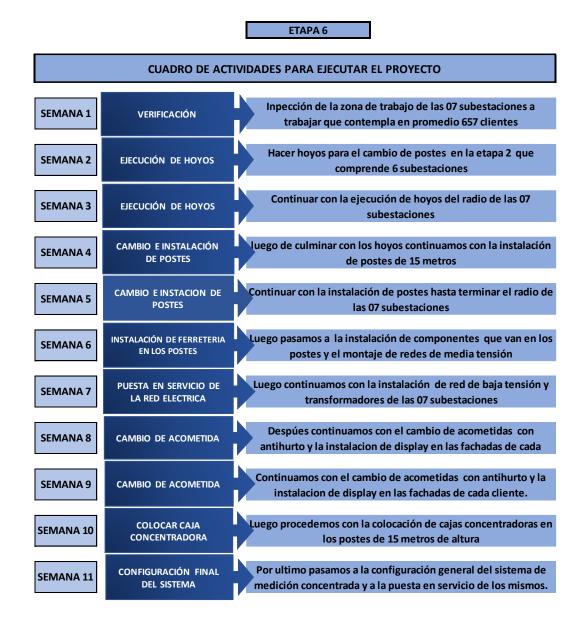

Después de la Etapa 02 se continúa con la Etapa 04 que consta de 04 subestaciones de distribución y 435 clientes activos, la ejecución de la Etapa 04 tiene un tiempo de duración de 08 semanas o un promedio de 60 días calendarios desde la fecha de inicio hasta su finalización.

Figura 38. Actividades a desarrollarse en la etapa 05 del proyecto.

Después de la Etapa 04 se continúa con la Etapa 05 que consta de 07 subestaciones de distribución y 685 clientes activos, la ejecución de la Etapa 05 tiene un tiempo de duración de 11 semanas o un promedio de 81 días calendarios desde la fecha de inicio hasta su finalización.

Figura 39. Actividades a desarrollarse en la etapa 06 del proyecto.

Después de la Etapa 05 se finaliza con la Etapa 06 que consta de 07 subestaciones de distribución y 657 clientes activos, la ejecución de la Etapa 06 tiene un tiempo de duración de 11 semanas o un promedio de 81 días calendarios desde la fecha de inicio hasta su finalización.

Tabla 9. Tiempo aproximado de ejecución del proyecto

ITEM	ETAPA	TIEMPO DIAS	SEMANAS
1	3	75	10
2	1	75	10
3	2	81	11
4	4	60	8
5	5	81	11
6	6	81	11
TOTAL	6	453	61
TIEMPO APROXIMADO			15 MESES

En la tabla se aprecia el tiempo promedio que durara desarrollar las 06 etapas del proyecto

3.8.1. COSTO DEL PROYECTO

Los costos son todos aquellos gastos en los que la compañía Enel Perú SAA. Van a desarrollar en conjunto con la empresa Dominion Perú Sac. Para ejecutar el proyecto, en la zona sur del Callao. Las dos principales clases de costos que se conocen son los costos directos e indirectos.

Estos son los siguientes:

Tabla 10. Costo de caja concentradora

COSTO DE CAJA CONCENTRADORA						
MATERIAL CANTIDAD COSTO TOTAL /S						
CAJA CONCENTRADORA	400	400	160000.00			
MODULOS DE MEDIDA 43.96 \$	3335	154.2996	514589.17			
ADECUACION DE CAJA CONCENTRADORA	400	500	200000.00			
TIPO DE CAMBIO	3.51					
TOTAL			874589.17			

En la tabla se muestra el costo de los materiales y la adecuación de la caja concentradora para todo el proyecto.

Tabla 11. Costo de tablero de distribución

COSTO TABLERO DISTRIBUCIÓN			
MATERIAL	CANTIDAD	COSTO	TOTAL/S
TOTALIZADOR TRIFASICO	37	1500	55500.00
COLECTOR DE DATOS 635.75 \$	37	2231.483	82564.85
MODEM DE COLECTOR	37	250	9250.00
MODULO DE ALUMBRADO PÚBLICO	37	149.8	5542.60
CONTACTOR SECCIONADOR	74	600	44400.00
CONTACTOR DE ALUMBRADO PUBLICO	37	600	22200.00
TABLERO CON MANO OBRA Y MATERIALES 1700\$	37	5967	220779.00
CONTROL FOTOELECTRICO	37	12.6	466.20
TIPO DE CAMBIO	3.5	1	
TOTALIZADOR TRIFASICO			440702.65

(M.Pelaez, 2020)

En la tabla se aprecia el costo de materiales para la implementación del tablero de distribución.

Tabla 12. Costo de red de distribución en baja tensión

RED DE BAJA TENSIÓN DISTRIBUCIÓN			
MATERIAL	CANTIDAD	COSTO	TOTAL/S
ACOMETIDA 70MT POR CLIENTE PROM.	233450	15	3501750.00
RED MATRIZ AUTOSOPORTADO 3*1*70	3200	35.8	114560.00
TRANSFORMADORES 50KVA / 10 KV	37	6300	233100.00
SOPORTE BASE TRANSFORMADOR	37	1000	37000.00
INSTALACION DE BASE PARA TRANSFORMADOR	37	6040	223480.00
CAJA PORTA MEDIDOR	1500	21.3	31950.00
MODULO DISPLAY 43.96 \$	3335	154.2996	514589.17
INTERRUPTOR TERMOMAGNETICO	3335	45	150075.00
PASTORAL	120	118.2	14184.00
TUBO PASTORAL	120	75	9000.00
LUMINARIAS LED	120	655	78600.00
GRAPA DE ANCLAJE PASTORAL	480	20.76	9964.80
ABRAZADERA DIAGONAL	600	25	15000.00
MANTA AISLANTE ANTITRACKING	111	394	43734.00
MANTA REFORZADA PARA RED DE BAJA TENSIÓN	600	147	88200.00
CONCERTINA	37	245	9065.00
CORONA DE PUAS	37	280	10360.00
PINTURA Y GRASA PARA POSTE	37	80	2960.00
TIPO DE CAMBIO	3.5	1	
TOTAL			5087571.97

En la tabla se muestran los costos de los materiales para la puesta en servicio de la baja tensión.

Tabla 13. Costo de red media tensión

RED MEDIA TENSIÓN				
MATERIAL	CANTIDAD	COSTO	TOTAL/S	
POSTE 15 MT	300	1680	504000.00	
CRUCETA DE MADERA	600	95	57000.00	
ARMADO TIPO H PARA SOPORTE DE CAJA CONCENTRADORA	250	1500	375000.00	
MENSULA CONCRETO	222	115	25530.00	
CABLE PORTANTE VIENTO	3200	3.01	9632.00	
INSTALACION MALLA DE PUESTA A TIERRA	37	535	19795.00	
AISLADOR POLIMERICO DE 25 KV	111	161.65	17943.15	
FUSIBLE DE 10 KV 200A (CUT UOT)	111	201	22311.00	
CABLE DENUDO DE 25KV MEDIA TENSIÓN	3000	3.89	11670.00	
FERRETERIA MENUDEO	300	150	45000.00	
TOTAL			1087881.15	

En la tabla se aprecia los costos de materiales para la puesta en servicio de la media tensión.

Tabla 14. Costo mano de obra

MANO DE OBRA				
ACTIVIDAD	CANTIDAD	COSTO	TOTAL/S	
RETIRO DE CAJA CONCENTRADORA	400	313.17	125268.00	
INSTALACION CAJA CONCENTRADORA	400	265	106000.00	
INSTALACIÓN TABLERO DISTRIBUCIÓN	37	630.45	23326.65	
RETIRO DE ACOMETIDA (PROMEDIO 70 MT) 1.85MT	3335	129.5	431882.50	
INSTALACIÓN DE ACOMETIDA (PROMEDIO 70 MT) 1.85MT	3335	129.5	431882.50	
INSTALACIÓN DE RED MATRIZ AUTOSOPORTADO 3*1*70	4000	1.85	7400.00	
RETIRO DE RED MATRIZ AUTOSOPORTADO 3*1*71	3200	1.85	5920.00	
INSTALACIÓN DE TRANSFORMADORES 50KVA / 10 KV	37	780.38	28874.06	
RETIRO DE TRANSFORMADOR	37	618.37	22879.69	
SOPORTE BASE TRANSFORMADOR	37	1000	37000.00	
INSTALACIÓN DE CAJA PORTA MEDIDOR	1500	26.5	39750.00	
INSTALACIÓN DISPLAY	3335	17.5	58362.50	
INSTALACION DE INTERRUPTOR TERMOMAGNETICO	3335	12.45	41520.75	
INSTALACIÓN DE PASTORAL	120	200.55	24066.00	
TUBO PASTORAL	120	85.05	10206.00	
INSTALACIÓN DE LUMINARIAS LED	120	145	17400.00	
RETIRO DE POSTE 15 MT	300	226.82	68046.00	
INSTALACIÓN DE POSTE 15 MT	300	639.02	191706.00	
INSTAL DE TIRANTE (VIENTO, ANCLA)	148	242	35816.00	
INSTALACIÓN DE CRUCETA DE MADERA	600	118.01	70806.00	
ARMADO TIPO H PARA SOPORTE DE CAJA CONCENTRADORA	250	155	38750.00	
INSTALACIÓN DE CABLE PORTANTE VIENTO	3200	1.85	5920.00	
INSTALACION MALLA DE PUESTA A TIERRA	37	511.62	18929.94	
INSTALACIÓN DE AISLADORES CUALQUIERA	900	33.62	30258.00	
INSTALACIÓN DE AISLADOR POLIMERICO DE 25 KV	111	33.62	3731.82	
RETIRO DE AISLADOR POLIMERICO DE 25 KV	111	75	8325.00	
INSTALACIÓN DE FUSIBLE DE 10 KV 200A (CUT UOT)	111	33.62	3731.82	
MANTA AISLANTE ANTITRACKING	111	8.84	981.24	
MANTA REFORZADA	1200	8.84	10608.00	
INSTALACIÓN DE CONCERTINA	37	46.85	1733.45	
INSTALACIÓN DE CORONA DE PUAS	37	122.1	4517.70	
PINTAR Y UNTAR GRASA AL POSTE	37	18.28	676.36	
RETIRO DE FUSIBKE DE10 KV 200A CUT OUT	111	74.08	8222.88	
CABLE DENUDO DE 25KV MEDIA TENSIÓN	3000	1.85	5550.00	
TOTAL			1920048.86	

(M.Pelaez, 2020)

En la tabla se aprecia los costos de la mano de obra para ejecutar el proyecto en la zona sur del Callao.

Tabla 15. Costo total del proyecto

COSTO TOTAL DEL PROYECTO		
CAJA CONCENTRADORA	874589.17	
COSTO TABLERO DISTRIBUCIÓN	440702.65	
RED DE BAJA TENSIÓN DISTRIBUCIÓN	5087571.97	
RED MEDIA TENSION	1087881.15	
MANO DE OBRA	1920048.86	
TOTAL	9410793.79	

(M.Pelaez, 2020)

En la tabla se muestra todos los costos asociados para ejecutar el proyecto en la zona sur del Callao.

3.9. CONCLUSIONES

- Del proyecto que ejecutamos estamos resolviendo, en el balance de la SED que se encontró un gran número de sustracción de energía los cuales incurren en conexiones clandestinas y manipulación de los medidores como consecuencia de estos resultados se tiene que poner más énfasis en el control de los mismos.
- La reducción de perdidas va a influir de manera directa en el mejoramiento de la calidad y capacidad del sistema de Enel Perú SAA.
 Y a su vez en la eficacia técnica para el control del incremento de perdidas no técnicas en el área social.
- El estudio de reducción de pérdidas en distribución es muy importante para el progreso del sistema eléctrico a fin de mejorar la eficiencia e incrementar sus ingresos.
- El proyecto de renovación de redes y medición centrada para la reducción y control de perdidas en la zona sur del Callao comprende la ejecución de 05 actividades principales: renovación de la red matriz, renovación de acometidas con cable anti fraude, renovación de medidores con medición concentrada, reincorporación de clientes morosos, incorporación de nuevos clientes y la educación social.
- Los medidores inteligentes nos ofrecen una solución efectiva a los problemas de lecturas no tomadas o mal tomadas se espera un mejor rendimiento en el área comercial debido a que las lecturas serán más

- confiables, debido a la dificultad de acceso por la ubicación en la que se sitúa evitando la manipulación de los mismos.
- La asistencia al consumidor será apropiada gracias a que Enel Perú SAA tendrá la información detallada de los consumos en tiempo real por lo que, frente a cualquier reclamo por parte del cliente, Enel Perú SAA podrá contestar de forma oportuna.
- Como los medidores inteligentes cuentan con la función de corte y reconexión del servicio eléctrico se tiene la expectativa en mejorar la calidad del servicio apegándose a los índices de calidad de la regulación por parte de Osinerming
- Con todas las acciones y actividades trazadas se debe cumplir con la meta propuesta de reducir las pérdidas.
- El proyecto de reducir las pérdidas genera un ahorro de compra de energía y promueve la disminución del costo aparte de percibir un aumento en la recaudación gracias a la facturación no registrada de los usuarios conectados en forma directa o por manipulación de los medidores.

3.10. RECOMENDACIONES

- Enel Perú SAA. Debe aplicar mayor atención en la renovación de redes y cambio de medidores con medición concentrada, pues la mayoría ha cumplido su ciclo de vida útil o son inadecuados para reducir las pérdidas en la zona sur del Callao.
- Enel Perú SAA siempre debe ejecutar planes para la evaluación y reducción y control de las pérdidas en sus diferentes zonas de concesión.
- Para los cambios a futuro de medidores inteligentes se debería considerar los beneficios a largo plazo, pues a pesar de costar 10 veces más que un medidor tradicional estos nos dan grandes beneficios para poder reemplazar las condiciones actuales y futuras además Enel Perú SAA. Podría encajar cómodamente a las tecnologías salientes como es el acontecimiento de las redes inteligentes.
- Los importes recuperados económicamente por causas de la reducción de perdidas deben ser colocados en acciones para conducir al mejoramiento del sistema eléctrico.
- Tomar acciones de control con una fuerte campaña de difusión destinada a sensibilizar a la opinión publica en general sobre el delito que significa el hurto de energía y loa peligros asociados que lleva la manipulación de las instalaciones eléctricas.
- Para futuros Proyectos se debe plasmar un apropiado diseño de las redes de distribución secundaria, con el objetivo de imposibilitar el acercamiento a las redes de distribución, con el fin de minimizar las pérdidas de energía.

CAPÍTULO IV

REFERENCIAS BIBLIOGRAGRÁFICAS

- DOMINION. (2020). Obtenido de https://www.dominion-global.com/es/-/dominion-signs-a-contract-with-enel-to-build-and-maintain-electrical-networks-in-peru-and-strengthens-its-position-in-the-electrical-sector
- ELECTRICAL, H. (OCTUBRE de 2020). https://www.veritradecorp.com/es/peru/importaciones-y-exportaciones-hexing-electrical-company-sac/ruc-20546102115. Obtenido de https://www.veritradecorp.com/es/peru/importaciones-y-exportaciones-hexing-electrical-company-sac/ruc-20546102115.
- enel. (JULIO de 2020). https://www.enel.pe/es/ayuda/hurto-de-energia.html. Obtenido de https://www.enel.pe/es/ayuda/hurto-de-energia.html.
- http://www.sectorelectricidad.com/wp-content/uploads/2018/08/traslado-de-energia.jpg. (30 de setiembre de 2018). Obtenido de http://www.sectorelectricidad.com/wp-content/uploads/2018/08/traslado-de-energia.jpg.
- https://www.enel.pe/es/ayuda/hurto-de-energia.html. (2020). *Enel*. Obtenido de https://www.enel.pe/es/ayuda/hurto-de-energia.html

indeco. (2019 de 2020). https://www.nexans.pe/. Obtenido de https://www.nexans.pe/.

M.Pelaez. (Setiembre de 2020). Callao.

CAPÍTULO V GLOSARIOS Y TÉRMINOS

Ampere (A): Unidad que mide la intensidad de una corriente eléctrica.

Representa la cantidad de electrones que circulan en un conductor en un segundo.

Carga: cantidad de potencia que debe ser entregada en un punto dado de un sistema eléctrico.

Carga promedio: Carga hipotética constante que en un periodo dado consumiría la misma cantidad de energía que la carga real en el mismo tiempo.

Central generadora: Lugar y conjunto de instalaciones incluidas las obras de ingeniería civil y edificaciones necesarias, directa o indirectamente utilizada para la producción de energía eléctrica.

Circuito: trayecto o ruta de una corriente eléctrica formado por conductores que transporta energía eléctrica entre fuentes (centrales eléctricas) y cargas (consumidores).

Conductor: material que opone mínima resistencia ante una corriente eléctrica cable.

Conexión clandestina: son realizadas con fines de hurto generalmente en forma precaria suelen ser muy peligrosos.

Consumo de energía: Energía eléctrica utilizada por toda o por una parte de una instalación durante un periodo determinado.

Energía Eléctrica: Es la producida por un generador cuando gira en un campo

electromagnético. El generador produce una energía que es igual a la potencia (W) multiplicada por el tiempo de funcionamiento. La energía eléctrica se mide en vatios por hora (Wh); 1.000 Wh = 1 kWh (un kilovatio).

Energía: Capacidad de un cuerpo o sistema para realizar un trabajo.

Falla: Anormalidad que interrumpe el servicio eléctrico.

Fraude Eléctrico: Manipulación de los medidores y/o acometidas por parte del consumidor a fin de lograr que sus registros sean inferiores a los que realmente deberían ser.

Generación: Producción de energía eléctrica.

Línea de transmisión: Es el conductor físico por medio del cual se transporta energía eléctrica de potencia, a niveles de tensión medios y elevados, principalmente desde los centros de distribución y consumo.

Pérdidas no técnicas: Es la energía consumida en el sistema, la cual no es facturada, excluyendo las pérdidas técnicas. Puede ser por fraude, errores o anomalías de medición, clientes auto conectados o con servicio directo.

Potencia: Es la capacidad de producir o demandar energía por unidad de tiempo. Se mide en vatios (W); 1.000 W = 1 kW.

Red de distribución: Es un conjunto de alimentadores interconectados y radiales que suministran a través de los circuitos la energía a los diferentes usuarios.

Seccionador: Es un dispositivo de seccionamiento que en caso de falla en el

ramal del alimentador donde se instala, abre sus contactos automáticamente, aislando así la falla, su operación está comunicada a la del interruptor o restaurador según el caso, abre sus contactos al contar la falta de potencial tres veces.

Sistema de distribución: Es el conjunto de subestaciones y alimentadores de distribución, ligados eléctricamente, que se encuentran interconectados en forma radial para suministrar la energía eléctrica.

Sistema eléctrico: Instalaciones de generación, transmisión y distribución, físicamente conectadas entre sí, operando como una unidad integral, bajo control, administración y supervisión.

Subestación de distribución: Es el conjunto de dispositivos eléctricos que sirven para reducir, regular y distribuir la energía eléctrica a la red primaria de distribución.

Subestación: Conjunto de aparatos eléctricos, localizados en un mismo lugar, y edificaciones necesarias para la conversión o transformación de energía eléctrica o para el enlace entre dos o más circuitos.

Subestación de transformación: Subestación que incluye transformadores.

Tablero de control: Dentro de una Subestación, son una serie de dispositivos que tienen por objeto sostener los aparatos de control, medición y protección, el bus mímico, los indicadores luminosos y las alarmas.

Tensión: Es la capacidad de hacer circular la corriente por un conductor. Se la llama comúnmente voltaje. Se mide en voltios (V).

Transformador: Dispositivo que sirve para convertir el valor de un flujo eléctrico a un valor diferente. De acuerdo con su utilización se clasifica de diferentes maneras.

Transmisión: Sistema constituido por el conjunto de líneas, cables y subestaciones transformadoras.

Telecomunicaciones: Las telecomunicaciones son la trasmisión a distancia de datos de información por medios electrónicos y/o tecnológicos.

GLOSARIO DE ABREVIATURAS

ANSI: American National Standards Institute. (Instituto Nacional

Estadounidense

de Estándares)

B.T: Baja Tensión

DC: Direct Current. (Corriente Directa)

I máxima: Intensidad Máxima

kV: Kilovoltio = 1.000 voltios.

KVA: Kilo Volt Ampere. Es la potencia aparente.

kW: Kilowatt Unidad equivalente a 1.000 watts.

kWh: Kilowatt-hora. Unidad de energía utilizada para registrar los consumos.

MW: Mega watt o megavatio: Unidad de consumo de energía equivalente a un million de vatios = 1.000 watts.

Gwh: Quiere decir millones de watts. Unidad de medida de la energía, equivalente a la energía desarrollada (generada o consumida) por 1 GW de potencia durante una hora.

S/E: Subestación

VATIO: Unidad de potencia (W)

VOLT o VOLTIO (V): Unidad que mide la tensión. En la industria eléctrica se usa también el kilovoltio (kV) que equivale a 1.000 V.

WATT (W): Es la unidad de potencia de la energía eléctrica. También se lo

denomina vatio.

IEC. Comisión internacional de electricidad.

MEM. Ministerio de Energía y Minas.

OSINERGMIN: Organismo Supervisor de la Inversión en Energía y Minería.

RCE: Equipo de Comunicación remota y medición.

REI: Red eléctrica inteligente.

SED: Subestación de distribución.

DAM: Distribución aérea mixta.

B2C: Las siglas B2C se refieren al mercado de consumo masivo, es decir, empresas que ofrecen productos o servicios a personas.

PLC: Controlador lógico programable es una computadora utilizada en la ingeniería automática o automatización industrial, para automatizar procesos electromecánicos, electroneumáticos, electrohidráulicos, etc.

CAPÍTULO VI ANEXOS

Figura 40. Certificado de conformidad de cable Auto Soportado.

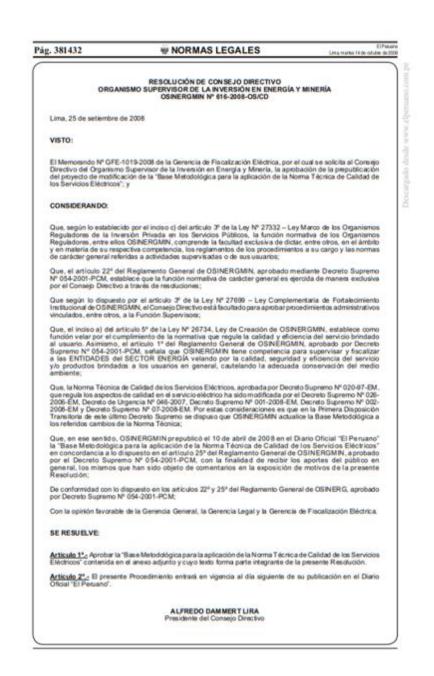

Figura 41. Certificado del fabricante del cable Auto Soportado

Figura 42. Certificado de la norma técnica de calidad de los servicios eléctricos.

Figura 43. Norma legal de calidad de los servicios eléctricos

Base metodológica para la aplicación de la norma técnica de calidad de los servicios eléctricos.

Figura 44. Nora de prensa por parte de Enel con respecto a los medidores inteligentes.

ENEL DISTRIBUCIÓN PERÚ INSTALA MÁS DE 8,700 MEDIDORES INTELIGENTES EN LIMA Y CALLAO

- Durante el primer trimestre de 2018, la compañía habrá instalado un total de 10,000 medidores inteligentes con una inversión aproximada de 1.1 millones de dólares.
- Este es el primer proyecto piloto en el Perú en llevar a cabo la instalación de medidores inteligentes, que brindan al cliente información más detallada sobre su servicio de electricidad y le permiten que optimice su consumo.

Lima, 7 de noviembre, 2017 – Enel Distribución Perú instaló más de 8,700 medidores inteligentes en siete distritos de Lima y Callao como parte de un proyecto piloto que tiene como objetivo crear una red eléctrica más eficiente y digitalizada para mejorar la calidad del servicio. La compañía invertirá un total de US\$ 1.1 milliones de dótares en el proyecto piloto que contempla la instalación de 10,000 medidores al término del primer trimestre de 2018, con el objetivo de mostrar los beneficios de esta tecnología y la gestión inteligente de energía para los clientes y todo el sistema eléctrico.

Estamos orgulisosos de haber lanzado este proyecto piloto para implementar medidores inteligentes a gran escala por primera vez en el Perú, "dijo Carlos Temboury, Country Manager de Enel Perú, "Estos dispositivos permiten que los clientes tomen mayor conciencia de su consumo de electricidad, lo que promueve la optimización del uso de energia, al mismo tiempo, permiten la gestión automatizada y remota de la red, lo cual aumenta su eficiencia. Estos medidores son el primer paso hacia las ciudades inteligentes; sientan las bases para otras soluciones de energía innovadoras como redes eléctricas inteligentes, movilidad eléctrica y automatización de las casas. Creemos que la energía es la puerta que abre el futuro y, por lo tanto, seguiremos trabajando para digitalizar nuestras redes completamente".

Los dispositivos que ya fueron instalados representan casi el 90% de los 10,000 que la compañía planea habilitar en los distritos de La Punta, San Miguel, Breña, Cercado de Lima, San Martín de Porres, Los Olivos y en la ciudad de Huacho. La compañía está trabajando para expandir progresivamente el uso de estos medidores a todos sus cilentes en el Perú.

Gracias a los medidores inteligentes, los clientes pueden tener acceso a una información más detallada sobre su uso de electricidad para que ajusten y optimicen su consumo. Estos dispositivos son controlados a través de un sistema de gestión centralizada que permite leer los medidores de forma remota, conectar y desconectar, además de recoger información en tiempo real para mejorar la calidad del servicio, asegurando la detección de posibles fraudes, al tiempo que monitorea eventuales pérdidas en la red.

Figura 45. Norma legal de medición centralizada

El Deruano

Figura 46. Procedimiento de cambio de medidores y accesorios.

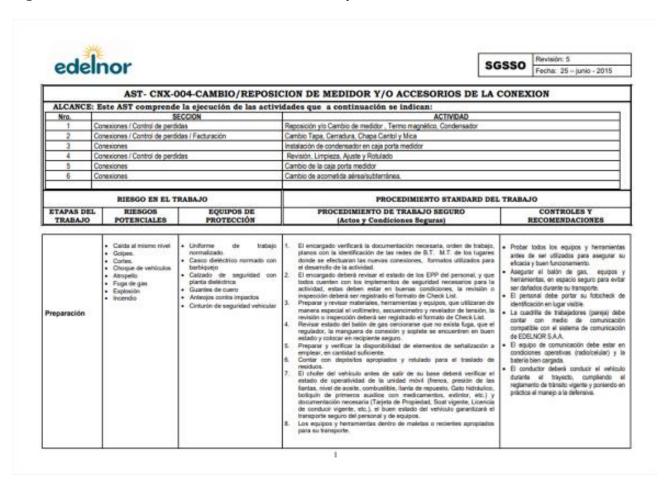


Figura 47. Procedimiento de instalación de cajas concentradoras.

SGSSO	Revisión: 2	
00000	Fecha: 09 de Noviembre del 2011	

RIESGO EN EL TRABAJO			PROCEDIMIENTO STANDARD DEL TI	RABAJO
ETAPAS DEL TRABAJO	RIESGOS POTENCIALES	PROTECCION		
Preparación	- Corte. - Choque	Uniforme de trabajo Calzado de seguridad con planta dieléctrico. Casco dieléctrico con bartiquejo. Careta de protección facial. Guantes dieléctrico B.T. Guantes de cuero.	1. Preparar y verificar la operatividad de la totalidad de los materiales, herramientas, equipos y grúa a utilizar. 2. Verificar que el personal a su cargo cuente con todos los implementos de seguridad necesarios, orden de trabajo, formateriale, procedimientos de trabajo que estos se encuentren vigentes y en buenes condiciones. El dhofer deberá realizar une inspección previa el vehículo verificando el buen funcionamiento de la misma. 4. Las actividades programadas deberán contar con la respectiva ceden de trabajo (OT) impresa. 5. Colocar los equipos de trabajo dentro de las maletas o recintos apropiados para su transporte. El chofer y el responsable del trabajo verificaran el correcto transporte de materiales y equipos. 7. Todo el personal será transportado sentado en asientos adecuados, estando prohibido visjar en la tolva. 8. El chofer y sus acompañantes deberán usar el cinturdo de seguridad del vehículo. 9. Verificar que el personal se encuentre debidamente identificado con su fotocheck vigente. 10. Verificar que la cuadrilla cuente con depósitos para los materiales que desechen durante la ejecución del trabajo.	Probar todos los equipo y herramientas antes di ser utilizados, para asegura su eficacia. Usar los guarde de cuero al revisor la herramientas puna: contantes. Cumplir con lo establecid en el Reglamento Nacional de Tránsito Vehicular. Cada cuadrilla debe corriar co un medio de comunicació según lo establecido en el Art 60 del RESESATAE.
dentificación y Coordinación	Caida al mismo nivel. Agresión de personas Agresión de animales	Uniforme de trabajo Calzado de seguridad con planta dieléctrico. Casco dieléctrico con barbiquejo. Guante dieléctrico B.T.	11. Ubicar la zona o el poste donde se malizará el trabajo y verificar la información señalada en la orden de trabajo. 12. El encargado de la cuadrilla, dará las instrucciones al personal designado para efectuar los trabajos y verificará que su personal utilice los equipos de entección personal	Inspección preventiva del estado del suello, verificar orden y limpieza. En caso de hostilidad solicita protección policial, evitar enfrentarse, retirarse.

Pánina 1 de 5

Procedimientos de trabajo para el personal

Figura 48. Norma internacional que cumplen los medidores

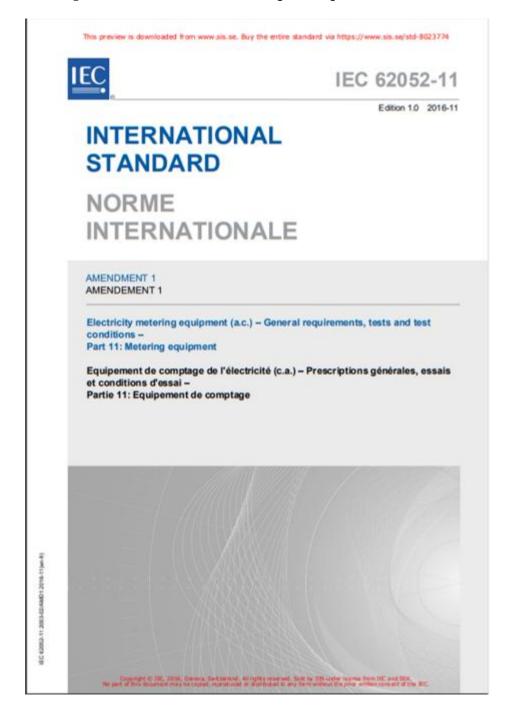


Figura 49. Norma internacional que cumplen los medidores por clase

Figura 50. Homologación de aprobación de los medidores en el Perú

CAPÍTULO IV

CITAS Y REFERENCIAS

• Sistemas de distribución de energía eléctrica

José Dolores Juárez Cervantes

• La industria de la electricidad en el Perú 25 años

Osinergmin.

• Futuro de la energía ene le Perú estrategia energéticas sostenibles.

Dr. Alberto Ríos Villacorta.

• Dirección general de electricidad capítulo 7

Ministerio de energía y minas Perdidas de energía eléctrica

Hurto de energía

Enel Perú SAA.

ANEXO