

UNIVERSIDAD ALAS PERUANAS

FACULTAD DE INGENIERÍA Y ARQUITECTURA

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

MEJORAMIENTO DE LAS CALLES CON PAVIMENTO FLEXIBLE EN EL DISTRITO DE ACO - PROVINCIA CONCEPCIÓN - DEPARTAMENTO JUNÍN - 2023

TRABAJO DE SUFICIENCIA PROFESIONAL PARA OPTAR POR EL TÍTULO PROFESIONAL DE INGENIERO CIVIL

PRESENTADO POR

Bach. ESPINOZA HILARIO, CHRISTIAN ORCID: 0009-0008-5874-9854

ASESOR

Mg. MORAN GARCÍA, LILIA YEINS ORCID: 0000-0003-4471-5692

HUÁNUCO - PERÚ 2023

ENTREGA FINAL

INFORME DE ORIGINALIDAD	
16% 15% 1% 8% INDICE DE SIMILITUD FUENTES DE INTERNET PUBLICACIONES TRABAJESTUDIAI	JOS DEL NTE
FUENTES PRIMARIAS	
hdl.handle.net Fuente de Internet	2%
repositorio.ucv.edu.pe Fuente de Internet	2%
Submitted to Universidad Alas Peruanas Trabajo del estudiante	1%
page.sencico.gob.pe Fuente de Internet	1%
repositorio.unsa.edu.pe Fuente de Internet	1%
6 www.slideshare.net Fuente de Internet	1%
7 Submitted to Universidad Cesar Vallejo Trabajo del estudiante	1%
8 Vsip.info Fuente de Internet	1%
9 qdoc.tips Fuente de Internet	<1%

54	es.slideshare.net Fuente de Internet	<1%
55	pt.slideshare.net Fuente de Internet	<1%
56	repositorio.unan.edu.ni Fuente de Internet	<1%
57	repositorio.unfv.edu.pe Fuente de Internet	<1%
58	repositorio.unheval.edu.pe Fuente de Internet	<1%
59	repositorio.unsm.edu.pe Fuente de Internet	<1%
60	repositorio.upla.edu.pe Fuente de Internet	<1%
61	WWW.car.gov.co Fuente de Internet	<1%
62	Antonio García Barberá. "Study of the Degradation of New Lubricant Oil Formulations with the Design and Demands of Current and Future Engines", Universitat Politecnica de Valencia, 2022	<1%

Excluir citas Activo Excluir bibliografía Activo Excluir coincidencias < 5 words

DEDICATORIA

A mi novia Gaby, quien me ha ayudado en mi carrera profesional, impulsándome y motivándome día a día para alcanzar este anhelo.

AGRADECIMIENTO

Agradecer a Dios porque es el motor de nuestras vidas, la luz de nuestros caminos, y por la vida que nos otorga día tras día.

A la Universidad Alas Peruanas por formarnos profesionalmente para servir a nuestra sociedad.

A mis padres que se esforzaron día a día para poder lograr esta meta.

RESUMEN

Este proyecto de investigación fue desarrollado del proyecto: "MEJORAMIENTO DE LOS SERVICIOS DE TRANSITABILIDAD VEHICULAR Y PEATONAL DE LAS VÍAS INTERNAS DEL BARRIO CHAUPIMARCA DE LA LOCALIDAD DE ACO, DISTRITO DE ACO, PROVINCIA DE CONCEPCIÓN - JUNÍN", el tramo en estudio consta de 12.4 km. El objetivo de este trabajo es proponer alternativas de solución que puedan contribuir a la mejora del mal estado de la calle del Distrito de Aco.

El proyecto de investigación comprende en el mejoramiento de las calles con pavimento flexible, así mismo, para determinar el espesor de este, se realizaron bajo la normativa del AASHTO-93.

Se realizó investigaciones fundamentales de ingeniería en el campo de la topografía, geotécnica y el transporte. Estos estudios son de suma importancia para determinar el espesor de las estructuras de pavimentos como sub base, base y asfalto.

Finalmente, habiendo desarrollado los cálculos y diseños, en los anexos se presenta un presupuesto con las partidas que involucran para la construcción del pavimento flexible, también se anexan los planos respectivos para su visualización.

ABSTRACT

This research project was developed from the project: "IMPROVEMENT OF VEHICULAR AND PEDESTRIAN TRAFFIC SERVICES OF THE INTERNAL ROADS OF THE CHAUPIMARCA NEIGHBORHOOD OF THE TOWN OF ACO, DISTRICT OF ACO, PROVINCE OF CONCEPCIÓN - JUNÍN", the section under study consists of 12.4 km. The objective of this work is to propose alternative solutions that can contribute to the improvement of the poor condition of the street in the District of Aco.

The research project includes the improvement of streets with flexible pavement, likewise, to determine the thickness of this, they were carried out under the AASHTO-93 regulations.

Fundamental engineering research was carried out in the field of topography, geotechnics and transportation. These studies are extremely important to determine the thickness of pavement structures such as subbase, base, and asphalt.

Finally, having developed the calculations and designs, the annexes present a budget with the items involved for the construction of the flexible pavement, the respective plans are also attached for viewing.

INTRODUCCIÓN

El trabajo de investigación se divide en 7 capítulos bien definidos.

El Capítulo 1 trata de las realidades del problema definiéndolo y explicando los objetivos del proyecto.

El Capítulo 2 analiza el desarrollo de proyectos a nivel piloto.

La sección 3 especifica los métodos y tipos de investigación utilizados en la investigación realizada.

El capítulo 4 extrae conclusiones y recomendaciones relevantes a partir de los resultados obtenidos.

El Capítulo 5 proporciona un glosario de términos para ayudar al lector a comprender la terminología técnica más reciente de la profesión aplicada, así como una bibliografía del desarrollo de trabajos de investigación publicados tanto en formato físico como electrónico.

El capítulo 6 organiza los diagramas, imágenes, tablas, etc. de los materiales utilizados en el estudio.

Finalmente, el Anexo 1 (Presupuesto) y el Anexo 2 (Programa) se describen en el Capítulo 7.

TABLA DE CONTENIDO

DEDICATORIA	i
AGRADECIMIENTO	ii
RESUMEN	iii
ABSTRACT	iv
INTRODUCCIÓN	V
CAPITULO I: REALIDAD PROBLEMÁTICA	1
1.1. DESCRIPCIÓN DE LA REALIDAD PROBLEMÁTICA	1
1.1.1. Antecedentes internacionales	1
1.1.2. Antecedentes Nacionales	2
1.1.3. Antecedente Local	4
1.2. FORMULACIÓN DEL PROBLEMA	5
1.2.1. Problema general	5
1.2.2. Problemas Específicos	5
1.3. OBJETIVOS DEL PROYECTO	5
1.3.1. Objetivo General	5
1.3.2. Objetivos Específicos	5
1.4. JUSTIFICACIÓN	6
1.5. LIMITANTES DE LA INVESTIGACIÓN	6
CAPITULO II: DESARROLLO DEL PROYECTO	7
2.1. DESCRIPCIÓN Y DISEÑO DEL PROCESO DESARROLLADO.	
2.1.1. REQUERIMIENTOS	
2.1.2. CÁLCULOS	
2.1.2.1. ESTUDIOS BÁSICOS	
2.1.2.2. ESTUDIOS COMPLEMENTARIOS	
2.1.2.3. RESULTADOS	
2.1.3. DIMENSIONAMIENTO	
2.1.4. EQUIPOS UTILIZADOS	
2.1.5. CONCEPTOS BÁSICOS	
2.1.6. ESTRUCTURA	
2.1.7. ELEMENTOS Y FUNCIONES	69

Z. I.O. PLAINIFIC	ACION DEL PROYECTO	70
2.1.9. SERVICIO	S Y APLICACIONES	74
CAPITULO III: DISEI	ÑO METODOLÓGICO	85
3.1. TIPO Y DISE	ÑO DE INVESTIGACIÓN	85
3.2. MÉTODO DE	INVESTIGACIÓN	85
3.3. POBLACIÓN	Y MUESTRA	86
3.3.1. POBLACIO	ŃΝ	86
3.3.2. MUESTRA	١	86
3.4. LUGAR DE E	STUDIO	86
	NSTRUMENTOS PARA LA RECOLECCIÓN DE LA	22
	SAMIENTO DE DATOS	
	CLUSIONES Y RECOMENDACIONES	
CAPITULO IV. CON	CLUSIONES I RECOMENDACIONES	91
	NES	
	NESACIONES	
4.2. RECOMENDA		92
4.2. RECOMENDA	ACIONES	92 93
4.2. RECOMENDA CAPITULO V: GLOS 5.1. GLOSARIO D	ACIONES	92 93 93
4.2. RECOMENDA CAPITULO V: GLOS 5.1. GLOSARIO D 5.2. REFERENCIA	ACIONES	92 93 93 95
4.2. RECOMENDA CAPITULO V: GLOS 5.1. GLOSARIO D 5.2. REFERENCIA CAPITULO VI: ÍNDIC	ACIONES SARIO DE TÉRMINOS, REFERENCIAS DE TÉRMINOS	92 93 93 95 97
4.2. RECOMENDA CAPITULO V: GLOS 5.1. GLOSARIO D 5.2. REFERENCIA CAPITULO VI: ÍNDICES DE	ACIONES	92 93 93 95 97
4.2. RECOMENDA CAPITULO V: GLOS 5.1. GLOSARIO D 5.2. REFERENCIA CAPITULO VI: ÍNDIO 6.1. ÍNDICES DE 6.2. ÍNDICE DE IN	ACIONES SARIO DE TÉRMINOS, REFERENCIAS DE TÉRMINOS A CES TABLAS	92 93 93 95 97 99
4.2. RECOMENDA CAPITULO V: GLOS 5.1. GLOSARIO D 5.2. REFERENCIA CAPITULO VI: ÍNDICE 6.1. ÍNDICES DE 6.2. ÍNDICE DE IN CAPITULO VII: ANE	ACIONES SARIO DE TÉRMINOS, REFERENCIAS DE TÉRMINOS A CES TABLAS MÁGENES	92 93 93 95 97 97 99

CAPITULO I: REALIDAD PROBLEMÁTICA

1.1. DESCRIPCIÓN DE LA REALIDAD PROBLEMÁTICA

1.1.1. Antecedentes internacionales

En su tesis (Villate Hernández, 2020) describe que: La ciudad de Bogotá consta de varios segmentos viales que forman las redes troncal y secundaria que permiten que el tráfico de la ciudad fluya regionalmente, lo que resulta en mayores velocidades de operación y tiempos de viaje más cortos. Es claro que una proporción significativa de caminos requieren una intervención efectiva, tomando en cuenta todas las variables como clima, tráfico, materiales locales y características de la subrasante del camino, ya que se ha demostrado que en algunos casos las fallas persisten poco tiempo después de las obras de mantenimiento del pavimento. en la superficie del proceso de desgaste. Asimismo, la disposición inadecuada de escombros de construcción y la extracción excesiva de piedra han provocado consecuencias como la contaminación ambiental a gran escala, por lo que cada vez nos encontramos con más accidentes ambientales. (p. 8)

La conclusión presentada en la tesis fue: La estructura de pavimento resiliente identificada como apta para la convocatoria Carrera 111 para los tramos 135 y 135B está compuesta por una capa de hormigón bituminoso de 8 cm de espesor, una capa base granular de 15 cm de espesor y una capa base granular de material RCD de 20 cm de espesor. (Villate Hernández, 2020, pág. 50)

En su tesis (Bayas Altamirano & Gavilanes Ilbay , 2023) describe que: Actualmente, los pobladores de Chilcapamba y Santa Marianitas viven en caminos pavimentados sin sistemas hidráulicos, lo que muchas veces dificulta la circulación y el acceso a la zona, lo que genera altos costos de transporte y pérdidas para los pobladores en la venta de sus productos. Este camino es utilizado principalmente por camiones para transportar productos agrícolas y leche cruda, generalmente al centro del estado oa los estados vecinos para su reventa. (p. 1)

Actualmente, los pobladores de Chilcapamba y Santa Marianitas viven en caminos pavimentados sin sistemas hidráulicos, lo que muchas veces dificulta la circulación y el acceso a la zona, lo que genera altos costos de transporte y pérdidas

para los pobladores en la venta de sus productos. La necesidad de este proyecto surge debido a que el firme de la vía se encuentra severamente deteriorado y carece de sistemas de protección contra el agua como cunetas y desagües, lo que dificulta el paso de vehículos. Se intenta solucionar este problema asegurando un adecuado diseño vial y se sugieren mejoras en cuanto a diseño geométrico y pavimentación, así como un adecuado diseño hidráulico para que el proyecto pueda mantenerse en óptimas condiciones por un mayor período de tiempo. periodo de tiempo. (Bayas Altamirano & Gavilanes Ilbay , 2023, pág. 2)

Al final de su trabajo, dice: determine la estructura de la carretera, tome la el diseño de 15% CBR, que es adecuada para la base, el número de ejes equivalentes (W18) 414830 ESAL, el valor de confiabilidad R 75%, la desviación estándar normal Zr -0.674 y La desviación estándar global Zo de 0,45 y el Mr igual a 17441,37 ksi así sucesivamente. A partir de estos datos se calculó un número de diseño requerido (SN) de 1,93 según la norma AASHTO-93, a partir del cual se calculó el espesor de la estructura de pavimento flexible. Tomar una capa de 5 cm de asfalto, 15 cm de granulado base y 20 cm de sustrato granular. (Bayas Altamirano & Gavilanes Ilbay , 2023, pág. 132)

1.1.2. Antecedentes Nacionales

En su tesis (Pari Jimenez & Chipana Jimenez, 2021) describe: el área del proyecto es una zona agro-industrial y turística con población con necesidades básicas insatisfechas, incluyendo agua potable y saneamiento, e infraestructura vial adecuada. (p. 1).

Esta obra mejorará significativamente la vida de los pobladores del área de estudio, ya que la capacidad de las vías mejorará los caminos vecinales en el tramo río seco del distrito de Pocollay del distrito de Tacna. Las condiciones para los vehículos, los peatones y el tráfico de la ciudad mejorarán significativamente, y los residentes de la zona se beneficiarán al máximo con tiempos de viaje más cortos y menos accidentes de tráfico. También se justifica académicamente, ya que el desarrollo de esta investigación permitirá la aplicación de procedimientos, métodos y conocimientos adquiridos en muchos años de formación académica, ya que esta

investigación se realiza de acuerdo con todas las normas y estándares técnicos pertinentes. (Pari Jimenez & Chipana Jimenez, 2021, pág. 3)

Finalmente se determinó el diseño de pavimento flexible, y de acuerdo a los resultados del estudio de tráfico e investigación de terreno se obtuvo el número de diseño SN = 1.736, del cual obtuvimos el coeficiente MTC de 0.170 para determinar aún más la composición asfáltica recomendada. Se recomiendan las capas según el manual vial MTC que observamos en el catálogo de estructuras viales flexibles, tipo TP0 con un CBR del 12%, una capa bituminosa de 5 cm de espesor y una base granular de 20 cm. Por lo tanto, realizando los estudios correspondientes y asegurando el cumplimiento de todas las condiciones y requisitos, se ha demostrado que la carretera adyacente se mejorará debido al aumento del tráfico. (Pari Jimenez & Chipana Jimenez, 2021, pág. 55)

En su tesis (Julca Pastor, 2021) hace mención que: En la ciudad Trujillo podemos encontrar superficies viales muy desgastadas que no están destinadas a ser reparadas, causando grandes molestias a los usuarios del transporte tanto público como privado, afectando costos operativos de mantenimiento de los vehículos. (p. 5)

Por otro lado, muchos senderos han quedado prácticamente olvidados y su estado se ha deteriorado con el tiempo sin el interés de las autoridades competentes; por tal motivo, el presente estudio sirve como propuesta para el mejoramiento de pavimentos flexible de las calles de la ciudad de Trujillo, teniendo en consideracion sus indicadores funcionales y estructurales, alargando la vida útil de las vías existentes y garantizando la seguridad en el acceso y la transitabilidad. Conveniente para los usuarios, por lo que un estudio integral del estado de las vías en la ciudad de Trujillo y la elaboración de un proyecto para su rehabilitación brindará una adecuada alternativa de solución para la rehabilitación del pavimento flexible que corresponderá a la infraestructura vial que la constituye. arriba nuestro país. Todas las normas y requisitos técnicos exigidos por las distintas normas y reglamentos aplicables. (Julca Pastor, 2021, pág. 7)

El artículo concluye con la presentación del proyecto de restauración del pavimento flexible con un tipo común de restauración de reconstrucción, con un espesor de 0.15m para la base, 0.20m para la base y 7,5 cm para la base; Dicha restauración se determinó en base a los estudios realizados y resultó en el mal estado del pavimento y por ende la necesidad de dichas reparaciones. (Julca Pastor, 2021, pág. 146)

1.1.3. Antecedente Local

(Acevedo Zarate, 2021) en su tesis describe: A lo largo del tiempo se han utilizado diversos métodos para determinar el espesor de las distintas superposiciones de materiales y la correcta compactación para que un pavimento flexible cumpla su función; El método SHELL determina así el tráfico por el número acumulado de ejes equivalentes al tener una circular se aplica al sistema de dos ruedas en la zona de contacto, de la misma manera que para determinar la temperatura, características del sustrato, del sustrato y de la cimentación. Con el método AASHTO 93 se determina la capacidad respectiva por unidad de espesor de una capa en función de los componentes estructurales del revestimiento, por lo que el coeficiente de estructura depende en gran medida de la firmeza del material (CBR, módulo, etc.), eficacia constructiva, estado tensional y mezcla asfáltica para estudiar el paquete estructural del pavimento. (p. 1)

Estudiantes de posgrado proponen un método alternativo para la determinación del espesor de pavimentos flexibles utilizando los métodos AASHTO y SHELL para determinar el esfuerzo, deformación, desgaste y resistencia de pavimentos flexibles, Huancayo - Junín. (Acevedo Zarate, 2021, pág. 2)

El trabajo concluye mencionando que el espesor obtenido por el método AASHTO dan un valor igual a 2.92. según el método Shell es de 3.05, lo que indica que el método Shell es conservador porque considera la temperatura y viscosidad del cemento asfáltico dentro de su rango. (Acevedo Zarate, 2021, pág. 88)

1.2. FORMULACIÓN DEL PROBLEMA

1.2.1. Problema general

 a) ¿De qué manera el pavimento flexible influye en el mejoramiento de las calles del distrito de Aco - Provincia Concepción - Departamento Junín -2023?

1.2.2. Problemas Específicos

- a) ¿Cómo se identificará las fallas para el mejoramiento de las calles del distrito de Aco Provincia Concepción Departamento Junín 2023 y como este influirá en la colocación del pavimento flexible?
- b) ¿Qué tipos de estudios serán necesarios para el mejoramiento de las calles del distrito Aco - Provincia Concepción - Departamento Junín – 2023 y como este influirá en el pavimento flexible?
- c) ¿De qué manera se realizará el procedimiento constructivo para mejorar las calles del distrito Aco - Provincia Concepción - Departamento Junín – 2023 y cómo influirá en el pavimento flexible?

1.3. OBJETIVOS DEL PROYECTO

1.3.1. Objetivo General

 a) Describir y analizar el diseño del pavimento flexible y como este influye en el mejoramiento de las calles del distrito de Aco - Provincia Concepción -Departamento Junín – 2023

1.3.2. Objetivos Específicos

- a) Identificar las fallas de la rasante para el mejoramiento de las calles del distrito de Aco - Provincia Concepción - Departamento Junín – 2023 y como este influirá en la colocación del pavimento flexible.
- b) Determinar cuáles serán los estudios necesarios para el mejoramiento de las calles del distrito Aco - Provincia Concepción - Departamento Junín – 2023 y como este influirá en el pavimento flexible.
- c) Describir el procedimiento constructivo para mejorar las calles del distrito
 Aco Provincia Concepción Departamento Junín 2023 y cómo influirá
 en el pavimento flexible.

1.4. JUSTIFICACIÓN

A medida que una población se va desarrollando es fundamental y esencial la construcción de calles y carreteras que permitirá el paso de personas y vehículos de manera segura. Esto significa proporcionar el desarrollo de la población, mejorando la seguridad de las personas, la economía, entre otras actividades que generan recursos económicos.

En el Distrito de Aco, no existen calles pavimentadas a nivel de carpeta asfáltica, realizando los trabajos de campo en las calles ACO, JUNÍN, BOLÍVAR, BOLOGNESI, CÁCERES, SAN ISIDRO, AYACUCHO, SÁENZ PEÑA Y JOSÉ DE LA MAR, se identificó que las calles se encuentran en pésimo estado, sin embargo al no encontrarse pavimentadas, Esto provoca una mala movilidad de vehículos y personas, que se acentúa en las denominadas horas punta (de 8.30 a 17.30 horas). 14:00 donde hay más peatones y vehículos que utilizan estas calles como salidas de la zona para desplazarse a diferentes puntos de la zona. La razón de esta incertidumbre es que sus calles no cuentan con una adecuada infraestructura vial urbana, es decir, sin barandas, aceras, zanjas y áreas verdes; durante la temporada de lluvias, cuando esta situación se agrava, el camino se vuelve intransitable, convirtiéndose posteriormente en un semillero de enfermedades infecciosas por la presencia de insectos y otros patógenos. Incluso en tiempo seco, el polvo provocado por la influencia del viento puede causar molestias a los vecinos del barrio, provocando graves enfermedades oculares y respiratorias, especialmente para los niños que viven en esta calle y las vías aledañas, la contaminación del aire es una alta morbilidad con el tracto respiratorio, enfermedades causadas por la emisión de partículas en suspensión.

1.5. LIMITANTES DE LA INVESTIGACIÓN

No se encontraron restricciones para desarrollar esta indagación.

CAPITULO II: DESARROLLO DEL PROYECTO

2.1. DESCRIPCIÓN Y DISEÑO DEL PROCESO DESARROLLADO

2.1.1. REQUERIMIENTOS

Tabla 1: Requerimiento Granulométricos para la Sub Base Granular

Tamiz	Porcentaje que Pasa en Peso			
Iaiiiiz	Gradación A *	Gradación B	Gradación C	Gradaciór
50 mm (2")	100	100		
25 mm (1")		75-95	100	100
9.5 mm (3/8")	30-65	40-75	50-85	60-100
4.75 mm (N° 4)	25-55	30-60	35-65	50-85
2.0 mm (N° 10)	15-40	20-45	25-50	40-70
4.25 μm (N° 40)	8-20	15-30	15-30	25-45
75 mm (N° 200)	2-8	5-15	5-15	8-15

Fuente: Sección 304 de las EG-2000 del MTC

Tabla 2: Requerimientos de Calidad para la Sub Base Granular

Ensayo	Norma -	Requerimiento	
Liisayo	NOTHIA	< 3000 msnm	> 3000 msnn
Abrasión Los Ángeles	NTP 400.019:2002	50 % máximo	
CBR de laboratorio	NTP 339.145:1999	30-40 % mínimo*	
Limite Liquido	NTP 339.129:1998	25% máximo	
Índice de plasticidad	NTP 339.129:1998	6% máximo	4% máximo
Equivalente de Arena	NTP 339.146:2000	25% mínimo	35% mínimo
Sales Solubles Totales	NTP 339.152:2002	1% máximo	

Fuente: Norma Técnica CE. 010 Pavimentos Urbanos

^{*} La curva de la Gradación "A" deberá emplearse en zonas cuya altitud sea igual o superior a 3000 m.s.n.m.

^{* 30%} para pavimentos rígidos y de adoquines. 40% para pavimentos flexibles.

Tabla 3: Requerimiento Granulométricos para Base Granular

Tamiz	Porcentaje que Pasa en Peso			
Iaiiiiz	Gradación A *	Gradación B	Gradación C	Gradaciór
50 mm (2")	100	100		
25 mm (1")		75-95	100	100
9.5 mm (3/8")	30-65	40-75	50-85	60-100
4.75 mm (N° 4)	25-55	30-60	35-65	50-85
2.0 mm (N° 10)	15-40	20-45	25-50	40-70
4.25 μm (N° 40)	8-20	15-30	15-30	25-45
75 mm (N° 200)	2-8	5-15	5-15	8-15

Fuente: Sección 304 de las EG-2000 del MTC

Tabla 4: Valor Relativo de Soporte, CBR

Descripción	Norma	Requerimiento
Vías Locales y Colectoras	NTP 339.145:1999	Mínimo 80%
Vías Arteriales y Expresas	NTP 339.145:1999	Mínimo 100%

Fuente: Norma Técnica CE. 010 Pavimentos Urbanos

Tabla 5: Requerimientos del Agregado Grueso de Base Granular

Encovo	Norma -	Requerimiento	
Ensayo	NOTIIIa -	< 3000 msnm	> 3000 msnn
Partículas con una cara fracturada	MTC E – 210 (1999)	80% ı	mínimo
Partículas con dos caras fracturadas	MTC E – 210 (1999)	40% mínimo	50% mínimo
Abrasión Los Ángeles	NTP 400.019:2002	40% r	náximo
Sales Solubles	NTP 339.152:2002	0,5% máximo	
Pérdida con Sulfato de Sodio	NTP 400.016:1999		12% máximc
Pérdida con Sulfato de Magnesio	NTP 400.016:1999		18% máximc

Fuente: Norma CE.010 Pavimentos Urbanos, 2010

^{*} La curva de la Gradación "A" deberá emplearse en zonas cuya altitud sea igual o superior a 3000 m.s.n.m.

Tabla 6: Requerimientos del Agregado Fino de Base Granular

Ensayo	Norma -	Requerimiento	
Elisayu	NOITIIa	< 3000 msnm > 3000 ms	
Índice de plasticidad	NTP 339.129:1998	4% máximo	2% máximo
Equivalente de Arena	NTP 339.146:2000	35% mínimo	45% mínimo
Sales Solubles	NTP 339.152:2002	0.5% r	máximo
Índice de durabilidad	MTC E – 214 (1999)	35% r	nínimo

Fuente: Norma CE.010 Pavimentos Urbanos, 2010

Tabla 7: Requerimientos para los Agregados Gruesos de Mezclas Asfálticas en Caliente

Encavo	Norma	Reque	rimiento
Ensayo	NOTITIA	< 3000 msnm	> 3000 msnn
Pérdida en Sulfato de Sodio	NTP 400.016:1999	12 % máximo	10 % máximo
Pérdida en Sulfato de Magnesio	NTP 400.016:1999	18 % máximo	15 % máximo
Abrasión Los Ángeles	NTP 400.019:2002	40 % máximo	35 % máximo
Índice de	MTC E - 214	35 % mínimo	
Durabilidad	(1999)		
Partículas chatas y	ASTM D - 4791	15 % máximo	
alargadas *	(1999)	13 % 1	IIIaxIIIIO
Partículas	MTC E - 210	Sogún	Table 0
fracturadas	(1999)	Según Tabla 9	
Sales Solubles	NTP 339.152:2002	0,5 % máximo	
Absorción	NTP 400.021:2002	1,00 %	Según Diseño
Adherencia	MTC E - 519 (1999)	+ 95	

Fuente: Norma CE.010 Pavimentos Urbanos, 2010

^{*} La relación a emplearse para la determinación es: 5/1 (ancho/espesor o longitud/ancho)

Tabla 8: Requerimientos para los Agregados Finos de Mezclas Asfálticas en Caliente

Encavo	Norma -	Requerimiento	
Ensayo	Nomia	< 3000 msnm	> 3000 msnn
Equivalente de Arena	NTP 339.146:2000	Según Tabla 10	
Angularidad del agregado fino	MTC E – 222 (1999)	Según Tabla 11	
Adhesividad (Riedel Weber)	MTC E - 220 (1999)	4 % mínimo	6 % mínimo
Índice de Durabilidad	MTC E – 214 (1999)	35 mínimo	
Índice de Plasticidad	MTC E – 111 (1999)	Máximo 4	NP
Sales Solubles Totales	NTP 339.152:2002	0,5 % máximo	
Absorción	MTC E – 205 (1999)	0,50 %	Según Diseño

Fuente: Norma CE.010 Pavimentos Urbanos, 2010

Tabla 9: Requerimientos para Caras Fracturadas

Descripción	Norma –	Espesor de Capa		
Descripcion	Norma –	< 100 mm	> 100 mm	
Vías Locales y Colectoras	[MTC E - 210(1999)]	65/40	50/30	
Vías Arteriales y Expresas	[MTC E - 210(1999)]	85/50	60/40	

Fuente: Norma CE.010 Pavimentos Urbanos, 2010

Nota: La notación "85/50" indica que el 85 % del agregado grueso tiene una cara Fracturada y que el 50 % tiene dos caras fracturadas.

Tabla 10: Requerimientos del Equivalente de Arena

Descripción	Norma	Equivalente Are (%)
Vías Locales y Colectoras	[NTP 339.146:2000]	45 mínimo
Vías Arteriales y Expresas	[NTP 339.146:2000]	50 mínimo

Fuente: Norma CE.010 Pavimentos Urbanos, 2010

Tabla 11: Angularidad del Agregado Fino

Descripción	Norma	Angularidad (%
Vías Locales y Colectoras	[MTC E - 222 (1999)]	30 mínimo
Vías Arteriales y Expresas	[MTC E - 222 (1999)]	40 mínimo

Fuente: Norma CE.010 Pavimentos Urbanos, 2010

La clasificación de los agregados pétreos utilizados en la producción de mezcla asfáltica en caliente es determinada por el contratista y aprobada por el supervisor de obra. La Tabla 12 muestra algunos de los grados más utilizados.

Tabla 12: Gradaciones de los Agregados para Mezclas Asfálticas en Caliente

Tomis	PORCENTAJE QUE PASA				
Tamiz -	MAC - 1	MAC - 2	MAC - 2		
25 mm (1")	100				
19 mm (3/4")	80-100	100			
12,5 mm (1/2")	67-85	80-100			
9,5 mm (3/8")	60-77	70-88	100		
4,75 mm (N° 4)	43-54	51-68	65-87		
2,00 mm (N° 10)	29-45	38-52	43-61		
425 µm (N° 40)	14-25	17-28	16-29		
180 µm (N° 80)	08-17	08-17	09-19		
75 μm (N° 200)	04-08	04-08	05-10		

Fuente: Norma CE.010 Pavimentos Urbanos, 2010

Además de los requisitos de calidad que debe tener el agregado grueso y fino, el material de la mezcla de los agregados debe estar libre de terrones de arcilla y se aceptará como máximo el uno por ciento (1%) de partículas deleznables según el ensayo NTP 400.015:2002. Tampoco deberá contener más de 0,5% en peso de materia orgánica u otros materiales deletéreos NTP 400.023:1979. (Norma CE.010 Pavimentos Urbanos, 2010, pág. 21)

2.1.2. CÁLCULOS

2.1.2.1. ESTUDIOS BÁSICOS

A. ESTUDIO DE TOPOGRÁFICO

A.1. DESCRIPCIÓN DE TRABAJOS REALIZADOS INVESTIGADOS EN CAMPO

A.1.1. METODOLOGÍA DE TRABAJO

Los levantamientos topográficos fueron realizados por un equipo que siguió el curso del objeto, realizando puntos de control o puntos de referencia, y también encontró sistemas existentes (buzones de suministro de agua y alcantarillado, tuberías de drenaje, esquinas de casas, postes de servicios públicos, caminos, etc.).

A.1.2. SELECCIÓN DE INFORMACIÓN

Toda la indagación topográfica aprovechable sobre el área de estudio se recolectó antes de que comenzara el levantamiento topográfico. La información recopilada es la siguiente:

- Planes de zonificación y subdivisión de la ciudad
- Estructura vial
- Equipamiento de la ciudad
- Georreferenciación en el lugar (BM oficial)

A.1.3. TOPOGRAFÍA GENERAL

Para terrenos en general, utilizando una Estación Total debidamente calibrado, realice levantamientos generales de todo lo relevante para el proyecto propuesto, como ejes viales, aceras, zanjas, estacionamientos, casas, farolas, muros, plazas, etc., BM y puntos de referencia, se tomaron lecturas de varios puntos como tramos de la vía, ubicación de buzones existentes, etc. sistemas de drenaje, postes de servicios públicos, ancho apropiado de aceras existentes, esquinas de casas, ubicación de árboles, ubicación de alcantarillas y desagües pluviales, pasajes, etc. Para el levantamiento topográfico de la vía a tender se realizó un levantamiento radial, se obtendrá una nube de puntos, que nos ayudará a triangular.

A.1.4. EQUIPOS TOPOGRÁFICOS UTILIZADAS

La topografía fue realizada con los siguientes personales y equipos:

- 01 Topógrafo.
- 03 Ayudantes
- 01 Estación Total
- 01 GPS Garmin manual

A.2. ETAPAS DE LEVANTAMIENTO

A.2.1. POLIGONAL BASE

En un primer paso se obtienen las coordenadas de los puntos de control mediante un GPS, una vez obtenida esta información se procedió a realizar el levantamiento topográfico.

Una vez que los instrumentos están en su lugar, se miden las elevaciones, estos datos se registran en cuadernos de campo, que luego se ingresan en la memoria del sitio y otros datos se obtienen a través de GPS.

A.2.2. MAPEO DE ELEMENTOS ENCONTRADOS EN LA VÍA

Al realizar un estudio del sitio, puede identificar los componentes de la carretera, identificar los pavimentos existentes, zanjas de tierra para drenaje de agua de lluvia, postes de electricidad, sumideros de drenaje, cajas de medición de agua potable, encuentros de carreteras importantes. Este trabajo se ejecutó utilizando estaciones totales que ayudaron a verificar su altitud y orientación.

A.2.3. LEVANTAMIENTO TOPOGRÁFICO Y LOCALIZACIÓN DE TODOS LOS ELEMENTOS EXISTENTES

Se inicia con la colocación de puntos de orientación y luego se continúa escaneando el resto de los puntos, teniendo en cuenta la segmentación del camino intermedio, el cual se segmenta cada 10 metros, dependiendo del ancho del camino, lado izquierdo y derecho, permite encontrar otros elementos como postes, puertas, buzones, casas, etc.

Ya obtenidos todos los puntos del terreno, descargue los datos del totalizador y procéselos una vez en el software.

B. ESTUDIO DE SUELOS

El trabajo de geomecánica tiene como finalidad investigar las propiedades del suelo que nos permitirán definir los criterios de diseño de carreteras (carreteras secundarias). Esta investigación se realizó en tres fases. El trabajo correspondió directamente a la verificación de información en campo. Luego evaluamos las propiedades de los materiales y finalmente procesamos la información obtenida para determinar las medidas de diseño. Los trabajos tienen como objetivo el levantamiento superficial y del suelo (subsuelo) de la vía mediante la excavación de trincheras colocadas cada 1,0 km a lo largo del eje de la vía (alternando izquierda y derecha en el lugar de la plataforma). Se toma una muestra y se envía a un laboratorio de suelo y control de calidad. El trabajo de laboratorio se enfoca en fijar las propiedades físicas y mecánicas de los suelos obtenidos como resultado del muestreo y es la base para determinar las propiedades de diseño.

B.1. TRABAJOS DE EXPLORACIONES DE CAMPO

Se trata de trabajos desarrollados en la zona donde se ubican las calles del distrito de Aco, y su finalidad principal es recopilar información de geología, geotecnia y mecánica de suelos "in situ".

La tarea más importante en el trabajo de campo de exploración fue la determinación del perfil estratigráfico del subsuelo determinado por excavación de calicatas.

Se excavaron 17 calicatas a cielo abierto de las calles Junín Tramo 01, Junín Tramo 02, Aco Tramo 01, Aco Tramo 02, Aco Tramo 03, Bolívar Tramo 01, Bolívar Tramo 02, Bolognesi, José de la mar Tramo 01, José de la mar Tramo 2, Ayacucho, Saenz Peña Tramo 01, Sáenz Peña Tramo 03, Cáceres Tramo 01, Cáceres Tramo 02 y Cáceres Tramo 03. Se tomaron una muestra por calle.

Se tomaron las muestras de los suelos para las pruebas correspondientes y enviadas a los laboratorios respectivos.

La ubicación y la profundidad de los huecos se muestran en la siguiente tabla:

Tabla 13: Ubicación y profundidad de calicatas

UBICACIÓN Y PROFUNDIDADES DE CALICATAS						
Calicata	Altura	Nº de muestras	Tipo de muestras	Ubicación		
C - 01	1.50	01	Suelo	Calle Junín Tramo 01		
C - 02	1.50	01	Suelo	Calle Junín Tramo 02		
C - 03	1.50	01	Suelo	Calle Aco Tramo 01		
C - 04	1.50	01	Suelo	Calle Aco Tramo 02		
C - 05	1.50	01	Suelo	Calle Aco Tramo 03		
C - 06	1.50	01	Suelo	Calle Bolívar Tramo 01		
C - 07	1.50	01	Suelo	Calle Bolognesi		
C - 08	1.50	01	Suelo	Calle José de la mar Tramo 01		
C - 09	1.50	01	Suelo	Calle José de la mar Tramo 01		
C - 10	1.50	01	Suelo	Calle José de la mar Tramo 02		
C - 11	1.50	01	Suelo	Calle Ayacucho		
C - 12	1.50	01	Suelo	Calle Sáenz Peña Tramo 01		
C - 13	1.50	01	Suelo	Calle Sáenz Peña Tramo 02		
C - 14	1.50	01	Suelo	Calle Sáenz Peña Tramo 03		
C - 15	1.50	01	Suelo	Calle Cáceres Tramo 01		
C - 16	1.50	01	Suelo	Calle Cáceres Tramo 02		
C - 17	1.50	01	Suelo	Calle Cáceres Tramo 03		

Fuente: Elaboración Propia

Describir el perfil estratigráfico de los suelos de acuerdo a la norma ASTM D 2487:

Caracterizar las propiedades físicas del subsuelo, principalmente en cuanto a color, consistencia, forma de grano, tamaño máximo de borde y canto rodado y cobertura general, el estado natural, descripción de la taxonomía del material excavado y determinación de la estabilidad de la excavación.

• Muestreo de suelos en "calicatas" excavadas según Norma ASTM D 420:

De la calicata, se muestrea las formaciones que componen el suelo de cimentación según lo recomendado en la Norma E.050.

Identificación de etapas críticas (por daños al suelo, drenaje y pavimento)

Determinación de niveles freáticos

B.2. PRUEBAS DE LABORATORIO

El ensayo de laboratorio de suelos es una técnica utilizada para determinar las características físicas y mecánicas de los suelos. El análisis de suelos es fundamental en la ingeniería civil y la construcción, ya que permite conocer la composición del terreno y las propiedades de los suelos para determinar su capacidad de soporte, resistencia y estabilidad.

Entre los ensayos de laboratorio de suelos más comunes se encuentran:

Tabla 14: Ensayo a realizar a las muestras obtenidas de las calicatas

ENSAYO	MTC	NTP	ASTM	PROPÓSITO
Clasificación SUCS	-	-	D 2487	Determinar el tipo de suelo
Clasificación AASHTO	-	-	D 3282	estándares existentes
Contenido de Humedad	E 108	339.127	D - 2216	Determinar el contenido de de la muestra
Análisis Granulométrico por Tamizado	E 107	339.128	D - 422	Determina la distribución de partículas del suelo
Límite Líquido	E 110	339.129	D 4318	Hallar en contenido de agu estados líquido y plástico
Límite plástico	E 111	339.129	D 4318	Hallar el contenido de aguestados plástico y semisóli Hallar el contenido de agua
Índice Plástico	E 111	339.129	T 90	del cual, el suelo está en plástico.
Valor Relativo de soporte CBR	E 132	339.145	D 1883	Determina la capacidad de suelo, el cual permite infer resilente del suelo
Proctor Modificado	E 115	339.141	D 1557	Determinar el óptimo co Humedad, para alcanzar Densidad Seca.

Fuente: Elaboración Propia

C. ESTUDIO DE TRAFICO

Para establecer la cantidad de vehículos y la participación de los tipos de vehículos en las vías objeto de estudio, se realizó el estudio de tráfico la cual determinó la estructura del pavimento. Este estudio se realizó en la CALLE BOLOGNESI CALLE AYACUCHO, CALLE SAENZ PEÑA CALLE CACERES, CALLE BOLIVIA, CALLE JOSE DE LA MAR, CALLE ACO, el cual tiene como objetivo primordial establecer la demanda actual y esperada de vehículos según el volumen de tráfico que circula actualmente en las vías principales.

Cabe señalar que la detección de tráfico es fundamental para otras actividades, como el diseño del pavimento adecuado, ya que gran parte de sus beneficios son el ahorro en costo de mantenimiento vehicular.

El propósito del estudio de tráfico actual es establecer el índice promedio diario (IMD) que circulará en el área de estudio y determinar el número de cargas por eje equivalentes (ESAL) que aguantará el camino durante su vida útil. En este caso se logra el EAL, que permite el diseño del pavimento. El camino bajo investigación es crítico porque es el camino principal en el pueblo de ACO.

C.1. GENERALIDADES

Es importante a nivel regional y provincial con infraestructura de transporte que conecta varios centros de población; mejorar las vías existentes y otras vías de tránsito importantes de la ciudad no sólo brindará seguridad, comodidad y economía para el usuario promedio o quienes actualmente utilizan la red vial, sino que también embellecerá la ciudad. Las calles de la ciudad ya no estarán congestionadas. La vía tiene una distancia cercana a 3,23 km y está ubicado en los cerros del centro del Perú a una altitud de 3480 metros con una ligera pendiente.

La velocidad de diseño es de 30 km/h. Sus particularidades de funcionamiento no eran las óptimas ya que la plataforma de construcción de vías no funcionaba, lo que generaba una gran incomodidad para el usuario y una apariencia visual inadecuada. Las siguientes áreas fueron consideradas en el desarrollo de este estudio:

- Estimación del tráfico efectiva
- Métodos de trabajo de campo
- Calculo del Índice Medio Diario (IMD).
- Pronósticos de tráfico futuro
- Procesamiento de datos de ejes equivalentes

C.2. EVALUACIÓN DE TRANSITO EXISTENTE

La circulación vehicular efectiva en las calles de la ciudad ACO, que es paso obligatorio de vehículos en ciudades cercanas, principalmente de vehículos livianos: automóviles, camiones, microbuses, minibuses y vehículos pesados.

El tráfico en esta vía es principalmente pasajero en automóviles, microbuses, camiones, autobuses, las horas pico son de 06:00 a 09:00, 13:00 a 16:00, 18:00 a 20:00, el tráfico pesado también es perceptible en la zona, se debe a la proximidad de la mina y la alta demanda de la agricultura en la zona.

C.3. METODOLOGÍA DEL TRABAJO DE CAMPO

El método de trabajo de campo desarrollado para este estudio se basó en las observaciones realizadas en el área de trabajo durante el desarrollo de los trabajos de cimentación y las recomendaciones del Manual de Investigación de Tránsito, que incluyó conteos de tráfico vehicular. Entre los pasos requeridos para un adecuado diseño de investigación:

- Fase de organización
- Fase organizativa
- Fase de realización
- Fase de elaboración.

Para determinar el volumen de tráfico que soporta la vía y su composición, el punto de control se ubica en el km 0.000 de la calle Junín, y el trabajo de conteo y categorización se desarrolla de manera permanente las 24h del día durante los 7 días de la semana.

2.1.2.2. ESTUDIOS COMPLEMENTARIOS

A. ESTUDIO DE IMPACTO AMBIENTAL

La progresiva inquietud por el medio ambiente no ha involucrado al desarrollo de diversos componentes y herramientas para prevenir, monitorear y evitar la degradación. Si la causa no puede ser eliminada, debe tomar las medidas correctivas, reparadoras, reparadoras o compensatorias finales apropiadas.

Hoy en día, los estudios de impacto ambiental se realizan como parte de varias actividades realizadas en el proyecto. La importancia de este estudio es muy importante porque nos da ciertos criterios y parámetros a considerar en nuestro trabajo, que ayudarán a prevenir lesiones y tomar acciones correctivas.

Considerando las ventajas que nos brinda realizar un artículo de impacto ambiental, que será una herramienta de apoyo a la hora de presentar el proyecto tanto al inicio de su ejecución como después de su finalización. obra, mantenimiento necesario.

B. ESTUDIO DE SEÑALIZACIÓN Y SEGURIDAD VIAL

El estudio de Señalización, permitió definir los riesgos actuales a los que se ven comprometidos los peatones como también los vehículos en el diario transitar por la calles del Distrito de Aco debido a la poca o inexistente información en las esquinas, referente al número de calles, señales de paseo peatonal o en zonas de alto flujo peatonal cercano a instituciones educativas, señalización en zonas parqueo vehicular entre otras señalizaciones de importancia necesaria para el correcto manejo del tránsito dentro del Distrito de Aco.

C. ESTUDIO DE RIESGO

El estudio de riesgo es un análisis detallado y sistemático de las posibles amenazas, vulnerabilidades y consecuencias asociadas a un evento o situación peligrosa. El objetivo principal de este es identificar, evaluar y priorizar los riesgos para implementar medidas de prevención y estudio de mitigación para reducir su impacto.

C.1. GESTIÓN DE RIESGOS

C.1.1. IDENTIFICACIÓN DE LAS AMENAZAS

C.1.1.1. INUNDACIONES

Las inundaciones son causadas por fuertes lluvias y pendientes agrícolas planas.

Esto hace que la lluvia se filtre en el suelo de las laderas, que luego se drena en los ríos. Dichos riesgos existen en el área del proyecto con turbidez irregular de la corriente y desviación de corrientes secundarias.

C.1.1.2. LLUVIAS INTENSAS

Se utilizó un principio conceptual que hace referencia al hecho de que, en la mayoría de los casos, las precipitaciones de intensidad extremadamente alta y de corta duración se producen hasta cierto punto geográficamente, establecer en el hecho de que estos sucesos de precipitación están agrupados con unidades meteorológicas en la mayor parte del mundo con condiciones físicas similares. características. El distrito de Aco tiene más precipitaciones de noviembre a marzo.

C.1.1.3. HELADAS FRIAJE Y NEVADAS

Al igual que la Sierra del Perú, uno de los lugares donde se han observado heladas alcanzando niveles relativos y considerados de riesgo. En cuanto al frío y las nevadas, la magnitud de su ocurrencia puede afectar la estabilidad del sistema hídrico y/o los cultivos que serán parte de los beneficiarios.

C.1.1.4. HUAYCOS

Los Huaycos tienen deslizamientos de lodo devastadores que son frecuentes en Perú. Se constituyen en la parte superior de las microcuencas porque existen capas de suelo frágiles en la zona o almacenes de tierra consolidados arrastrados por el agua de lluvia. Se presentaron varios deslizamientos en la Cuenca del Huaraga y en la Microcuenca del Río Nino. Son causados por precipitaciones excesivas, deforestación o suelo desnudo y pendientes pronunciadas. El distrito de Aco está situado en la parte más baja de los cerros Micha, Uchuculo, Coto Coto y Toro Corral en un terreno suave.

C.1.1.5. SISMOS

Perú está situado en el Cinturón de Fuego, que es parte de una zona sísmica. Por lo tanto, el último registro ocurrió el 15 de agosto de 2013 en Pisco, Región 4, que experimentó la mayor aceleración horizontal luego del evento sísmico. De acuerdo con los mapas adjuntos, el área de Aco se encuentra en la zona 3, un área con riesgo medio en caso de un evento sísmico.

D. INFORME DE SEGURIDAD Y SALUD OCUPACIONAL

Este estudio de seguridad y salud ocupacional proporcionará una guía básica para que los técnicos cumplan con sus obligaciones de prevención de peligros y seguridad bajo la Norma de Seguridad del Código Nacional de Construcción G.050, D.S. 001-2006-8 de mayo de 2006 VIVIENDA, cuyo espacio es la prevención de peligros de los trabajadores de la construcción y obras de edificación. Así como las disposiciones mencionadas en la Resolución N° 039-2016-GRH/GGR sobre la gestión del ámbito normativo, que se refiere a la elaboración de lineamientos de investigación de seguridad durante la implementación.

2.1.2.3. RESULTADOS

A. ESTUDIOS DE TOPOGRAFÍA

El proceso de la indagación del terreno se desarrolla con el software Civil 3D, que es un programa de computador que trabaja en un ambiente CAD, lo que se refiere a métodos de trabajo, lo describimos a continuación:

- La información del terreno se importa a Excel en formato de punto separado por comas (CSV).
- Entonces decidimos generar y editar una Red Triangular (TIN) basada en coordenadas de puntos y elevaciones usando la forma del terreno observada en el campo como estándar.
- Continuamos mapeando los detalles de las medidas del área usando croquis de campo que nos ayudaron a procesar los puntos obtenidos de los recolectores de datos.

IMAGEN N° 1: Ubicación de la Poligonal en el área de estudio

Tabla 15: Corrección de la Poligonal por Planimetría

EST.	E	N	DIST. ENTRE EST.	DELTA E	DELTA N	CORRECCIONES POR CUADRANTES	
						E1	N1
Α	459500.02	8677924.80					_
В	459623.54	8677954.51	127.043	123.5195	29.7135	0.003399752	0.001070789
С	459777.55	8677918.65	158.134	154.0151	35.8559	0.004239113	0.001292144
D	459856.99	8677905.74	80.473	79.4307	12.9089	0.002186251	0.0004652
Е	459820.18	8677978.90	81.895	36.8056	73.1579	0.001013038	0.002636401
F	459774.31	8678034.17	71.827	45.8727	55.2704	0.001262601	0.001991787
G	459708.37	8678159.10	141.258	65.9403	124.923	0.001814941	0.004501866
Н	459652.51	8678264.30	119.110	55.8589	105.1999	0.001537461	0.003791102
I	459619.95	8678270.84	33.208	32.5572	6.5415	0.000896105	0.000235737
J	459545.92	8678351.60	109.565	74.0356	80.766	0.002037756	0.002910575
K	459510.76	8678430.94	86.773	35.1537	79.3328	0.000967571	0.002858926
М	459465.47	8678489.31	73.884	45.2921	58.3735	0.00124662	0.002103613
Ν	459315.65	8678476.69	150.345	149.8146	12.618	0.004123498	0.000454716
Q	459342.76	8678355.47	124.214	27.1086	121.2197	0.000746137	0.00436841
0	459377.44	8678200.49	158.809	34.6716	154.9781	0.000954301	0.005584966
Р	459442.22	8678054.78	159.469	64.7896	145.7138	0.001783269	0.005251107
Α	459500.05	8677924.84	142.226	57.8254	129.9399	0.001591587	0.004682661
				1082.6912	1226.5128	0.0298	0.044199999

Fuente: Elaboración Propia

Tabla 16: Correcciones por cuadrantes Acumuladas

DELTA E CORR	DELTA N CORR	EC	NC
		459500.0202	8677924.796
0.00339975	0.00107079	459623.54	8677954.51
0.00763886	0.00236293	459777.55	8677918.65
0.00982512	0.00282813	459856.98	8677905.74
0.01083815	0.00546453	459820.17	8677978.90
0.01210075	0.00745632	459774.30	8678034.17
0.01391569	0.01195819	459708.35	8678159.08
0.01545316	0.01574929	459652.49	8678264.28
0.01634926	0.01598503	459619.93	8678270.82
0.01838702	0.0188956	459545.90	8678351.58
0.01935459	0.02175453	459510.74	8678430.91
0.02060121	0.02385814	459465.45	8678489.29
0.02472471	0.02431286	459315.63	8678476.67
0.02547084	0.02868127	459342.74	8678355.44
0.02642514	0.03426623	459377.41	8678200.46
0.02820841	0.03951734	459442.20	8678054.74
0.0298	0.0442	459500.02	8677924.80

Fuente: Elaboración Propia

	ERROR X	ERROR Y	DISTANCI A	DIST E	DIST N	
	0.03	0.04	1818.231	2.7524 E-05	3.60371 E-05	
ENTO	NCES LA COR	RECCIÓN				
_	R DE CIERRE		0.0533	m		
LONG ITUD			1818.23	m		
ERRO	R ADMISIBLE					
	P= ERROI POLIGONAL		SUMA(LONG			
	PR	1/5000	MÁXIMO RE	COMENDADO		
	ERROR MÁX	KIMO	0.0	m	>	0.0533
	LO CUAL ES					

Tabla 17: Corrección de la Poligonal por Altimetría

Estación	Distancia entre estación	Distancia acumulada	Cota	Corrección	Cota corregida
A		0	3490.092		3490.092
В	127.043	127.043	3482.224	-0.002	3482.222
С	158.134	285.177	3473.43	-0.004	3473.426
D	80.473	365.650	3467.878	-0.006	3467.872
Е	81.895	447.544	3471.086	-0.007	3471.079
F	71.827	519.371	3472.889	-0.008	3472.881
G	141.258	660.630	3472.547	-0.010	3472.537
Н	119.110	779.740	3473.333	-0.012	3473.321
1	33.208	812.948	3474.266	-0.013	3474.253
J	109.565	922.512	3477.606	-0.014	3477.592
K	86.773	1009.285	3479.885	-0.016	3479.869
M	73.884	1083.169	3481.582	-0.017	3481.565
N	150.345	1233.514	3489.179	-0.019	3489.160
Q	124.214	1357.728	3490.823	-0.021	3490.802

0	158.809	1516.537	3489.744	-0.023	3489.721
Р	159.469	1676.005	3490.149	-0.026	3490.123
Α	142.226	1818.231	3490.12	-0.028	3490.092
ERROR			0.028		
FACT			-1.53996 E-05		

К			42.641	km
ERROR MÁXIMO		ERR. MAX.	78.36	mm
ERROR DE LA NIVELACIÓN		ERR. NIV	2.8	mm
DONDE	ERR. NIV.	<	ERR. MAX.	CORRECTO

A continuación, se muestran imágenes del levantamiento topográfico del terreno:

Imagen N° 2: Levantamiento Topográfico

B. ESTUDIOS DE SUELOS

B.1. DESCRIPCIÓN DE CRITERIOS PARA ZONIFICACIÓN DE SUELOS

B.1.1. Perfil Estratigráfico

Los resultados de las pruebas de laboratorio de suelos y la categorización visual del suelo in situ, nos permitieron comprender y narrar las propiedades físicas y mecánicas del suelo, identificar las capas encontradas y sus respectivos espesores, y registrar el perfil estratigráfico. del camino pregunta. (base de camino subterráneo existente), se muestra la ubicación y las variaciones horizontales y verticales de cada capa encontrada, se clasifican los suelos por AASHTO y SUCS, y se analiza la capacidad portante y condiciones adversas del subsuelo.

Tabla 18: Resultado de la Clasificación de Suelos

	JUNÍN TRAMO 01 Y 02		JOSÉ DE LA MAR TRAMO 01 Y 02			ACO TRAMO 01, 02 Y 03		
Calicata	C-01	C-02	C-01	C-02	C-03	C-01	C-02	C-03
PROF.(m)	2.0	1.50	1.50	1.50	1.50	1.50	1.50	1.50
Contenido de Humedad (%):	10.00%	11.2%	6.85%	7.88%	16.23%	10.20%	11.20%	24.51%
Limite Liquido (%)	30.00	29.50	31.0	29.8	31.0	30.0	31.5	32.0
Limite Plástico (%)	22.3	21.9	23.3	22.5	23.0	22.4	24.0	24.2
Índice Plástico (%)	7.7	7.6	7.7	7.3	8.0	7.6	7.5	7.8
SUCS	SC	SC	SC	SC	SC	SC	SC	SC
AASHTO	A-4(2)	A-4(0)	A-4(2)	A-4(1)	A-4(2)	A-4(2)	A-4(2)	A-4(2)

	BOLÍ VAR	BO LOG NESI	AYA CU CHO	SAENZ PEÑA TRAMO 01, 02 Y 03			CÁCER	ÁCERES TRAMO 01, 02 Y 03			
Calicata	C-1	C-1	C-1	C-1	C-2	C-3	C-01	C-02	C-03		
PROF.(m)	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50		
Contenido de											
Humedad	12.03%	6.78%	23.15%	11.20%	15.22%	12.92%	10.0%	10.5%	12.8%		
(%):											
Limite	29.0	28.5	29.9	29.0	30.2	29.0	30.0	31.0	31.0		
Liquido (%)	20.0	20.0	20.0	20.0	00.2	20.0	00.0	01.0	01.0		
Limite	21.4	21.2	22.6	21.5	22.2	21.5	22.2	23.0	23.1		
Plástico (%)			22.0	21.0		21.0		20.0	20		
Índice	7.6	7.3	7.3	7.5	8.0	7.5	7.8	8.0	7.9		
Plástico (%)											
SUCS	SC	SC	SC	SC	SC	SC	SC	SC	SC		
AASHTO	A-4(2)	A-4(2)	A-4(1)	A-4(2)	A-4(2)	A-4(2)	A-4(2)	A-4(2)	A-4(1)		

FUENTE: Resultado de los ensayos del Estudio Geotécnico, Elaborado por la Empresa LMSG-GEOTECNIA Laboratorio de suelos y materiales.

B.1.2. 5.1.2 Capacidad de Soporte (CBR)

Para valorar la capacidad de soporte del subsuelo se manejaron los valores de CBR conseguidos en el laboratorio. El CBR obtenido para un Proctor modificado con una densidad seca máxima del 100% y una penetración de 0,1 pulgada es:

Tabla 19: Resultados Proctor Modificado

Calicata	Densidad (g/cm3)	Humedad (%)	CBR AL 100%	CBR AL 95%	TRAMO
C-01	1.823	17.00	13%	8%	CALLE JUNÍN TRAMO 01 Y 02
C-01	1.660	14.60	13%	8%	JOSÉ DE LA MAR TRAMO 01 Y 02
C-01	1.775	10.52	15%	10%	CALLE ACO TRAMO 01, 02 Y 03
C-01	1.785	11.60	14%	9%	CALLE BOLÍVAR TRAMO 01
C-01	1.614	15.40	12%	7%	CALLE BOLOGNESI
C-01	1.650	17.30	13%	8%	CALLE AYACUCHO
C-01	1.691	15.50	14%	9%	CALLE CÁCERES TRAMO 01, 02 Y 03
C-01	1.634	12.80	15%	9%	CALLE SAENZ PEÑA TRAMO 01, 02 Y 03
M-01	2.276	6.53	78%	52%	BASE Y SUB BASE

FUENTE: Resultados de muestras de investigación geotécnica, Elaborado por la Empresa LMSG-GEOTECNIA Laboratorio de suelos y materiales.

Imagen N° 3: Extracción de Muestras

Imagen N° 4: Resultado de los Ensayos de Laboratorio

LABORATORIO MECANICA SUELOS - PAVIMENTOS RIGIDOS Y FLEXIBLES EXSAYO DE MATERIALES PETREOS

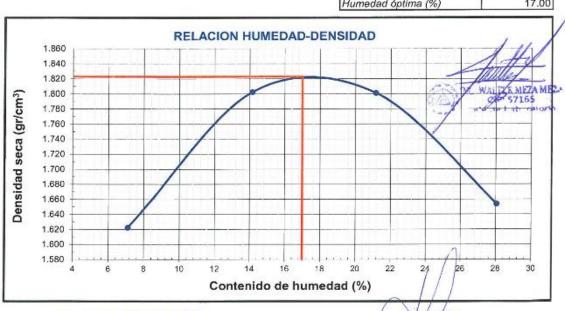
Pasaje Rio Chilea Nº 385 - Chilea - Haancayo Cel. Nº 998982919------Telel.-

PROYECTO :Instalacion del Sistema de Drenaje Pluvial de la Av. Ricardo Palma y Hatun Xauxa en los Distritos de .

Yauyos y Sausa- Provincia de Jauja - Junin.

LUGAR : Dist. Jauja, Yauyos, Sausa- Prov. Jauja - Dep. Junin. SOLICITA : CONSORCIO INGENIERIA & CONSTRUCCION.

ENSAYO PROCTOR MODIFICADO


(NORMA AASHTO T-180, ASTM D 1557)

LABORATORIO MECANICA DE SUELOS, CONCRETOS Y PAVIMENTOS									
LUGAR:	CALLE JUNIN TRAMO 01 - 02	TECNICO	3	F.M.V.					
KM.	0	ING. RESP.		W.M.M.					
MATERIAL:	0	FECHA	1	14/03/2017					
LADO :	0								

CALICATA : : 01 MUESTRA: : 01 CLASF. (SUCS) PROF. (m): CLASF. (AASHTO) : 1.50

METODO DE COMPACTACION : ASSTHO T180 (D, Con Remplazo)

Peso suelo + molde	gr	10052.00	10725.00	10988.00	10852.00	
Peso molde	gr	6394.00	6394.00	6394.00	6394.00	
Peso suelo húmedo compactado	gr	3658.00	4331.00	4594.00	4458.00	
Volumen del molde	cm ³	2105.00	2105.00	2105.00	2105.00	
Peso volumétrico húmedo	gr	1.738	2.057	2.182	2.118	
Recipiente Nº						
Peso del suelo húmedo+tara	gr	600.00	600.00	600.00	600.00	
Peso del suelo seco + tara	gr	560.21	525.62	495.23	468.54	
Tara	gr	0.00	0.00	0.00	0.00	
Peso de agua	gr	39.79	74.38	104.77	131.46	= = = =
Peso del suelo seco	gr	560.21	525.62	495.23	468.54	
Contenido de agua	%	7.10	14.15	21.16	28.06	
Peso volumétrico seco	gr/cm ³	1.623	1.802	1.801	1.654	
				Densidad máxi		1.823

Laboratorio Spelos Concretos Asfalto

Fernando Meza Vila

Reg. CIP. Nº 22934

LABORATORIO MECANICA DE SUELOS -GEOTECIMA

Pasajo Bio Chilcu Nº 385 - Chilca - Huancayo Cel. Nº 998982949------Telef.
PROYECTO :Mejoramiento de los Servicios de Transitabilidad Vehicular y Peatonal de las Vias Internas del Barrio

de Chaupimarca de la Localidad de Aco, Provincia de Concepcion - Junin.

: Distrito de Aco - Provincia Concepcion - Dep. Junin.

SOLICITA : MUNICIPALIDAD DISTRITAL DE ACO.

RELACION DE SOPORTE DE CALIFORNIA (C.B.R.)

(NORMA AASHTO T-193, ASTM D 1883)

	LABORATORIO MECANICA DE SUELOS, CONCRETOS Y PAVIMENTOS							
CANTERA:	CALLE JUNIN TRAMO 01 - 02	TECNICO :	F.M.V					
KM.	D	ING. RESP.	W.M.M.					
MATERIAL :	0	FECHA :	14/03/2017					
LADO :	0							

Molde Ne	4		5		6		
Capas Nº	5		5		5		
Golpes por capa Nº	56		25	5	13	2	
Condición de la muestra	NO SATURADO	SATURADO	NO SATURADO	SATURADO	NO SATURADO	SATURADO	
Peso de molde + Suelo húmedo	11488.00	11526.00	11354.00	11362.00	11121.00	11129.00	
Peso de molde (g)	6990.00	6990.00	7090.00	7090.00	7000,00	7000.00	
Peso del suelo húmedo (g)	4498.00	4536,00	4264.00	4272.00	4121.00	4129.00	
Volumen del molde (cm ³)	2109.00	2109.00	2105.00	2105.00	2123.00	2123.00	
Densidad húmeda (g/cm²)	2.133	2.151	2.026	2.026	1.941	1.958	
Tara (N°)					1		
Peso suelo húmedo + tara (g)	500.00	500.00	500.00	500.00	500.00	500.00	
Peso suelo seco + tara (g)	427.36	427.02	427.34	427.39	427.38	427.33	
Peso de tara (g)	0.00	0.00	0.00	0.00	0,00	0.00	
Peso de agua (g)	72.64	72.98	72.66	72.61	72.62	72.67	
Peso de suelo seco (g)	427.36	427.02	427.34	427.39	427.38	427.33	
Contenido de humedad (%)	17.00	17.09	17.00	16.99	16.99	17.01	
Densidad seca (g/cm')	1.823	1.837	1.731	1.735	1.659	1.662	
	1.823	5541/01	1.731	2,000	1.659		
(SSO) - 101 1 101 (SSO)	Maria Septiment	EX	(PANSION				

FECHA	HORA	LIEMPO	DIAL	EXPA	NSION	DIAL	EXPA	NSION	DIAL	EXPA:	NSION
				mm	%		mm	%	<u> Allaman</u>	mm	%
	+										
			- 19				1				io nii

PENETRACION

	CARGA	GA MOLDE N°		4	4 MOLDE N°			5	MOLDE N°			6	
PENETRACION	STAND.	CARGA		CORRE	CCION	CARGA	CORRECCION	ION	CAF	RGA	CORRECCION		
mm	kg/em2	Dial (div)	kg	kg	%	Dial (div)	kg	kg	%	Dial (div)	kg	kg	- %
0.000		0	0		3	0	0			0	0		
0.635		15	48.4		6 I	19	61.3	. i		22	70.9		
1.270		68	219.0			44	141.8	x		40	128.9		
1.905		115	369.8			109	350.6			93	299.2		
2.540	354,152	202	648.0	850.0	12.404	186	596.9	560.0	8.2	168	539.4	495.0	7.2
3.810		351	1121,1			324	1035.7			310	991.3		7.00
5.080	372.36	396	1263,2	1560.0	21.651	340	1086.3	1150.0	16.0	289	924,7	1000.0	13.9
6.350							2.25-16010						
7.620							/\						
10.160							//				1		/
		8					111				1	1 1	

Laboratgene Suelos Concretos Asfaito

Fernando Meza VIIa

Saturni in Resado Certriancho Ingeniero geologo Reg. GIP. Nº 22034

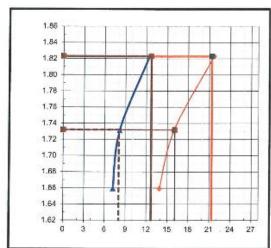
CIP 57165

LABORATORIO MECANICA DE SUELOS -GEOTECNIA

Progretto Chilea N° 385 - Chilea - Huancoyo Cel. N° 998982949-----Telet.PROYECTO :Instalacion del Sistema de Drenaje Pluvial de la Av. Ricardo Palma y Hatun Xauxa en los Distritos de Jauja,

Yauyos y Sausa- Provincia de Jauja - Junin.

LUGAR : Dist. Jauja, Yauyos, Sausa- Prov. Jauja - Dep. Junin.

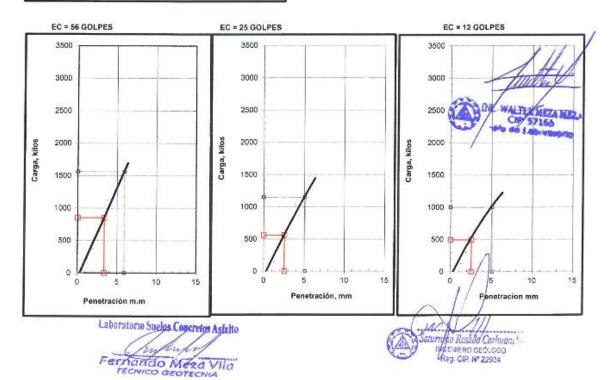

: CONSORCIO INGENIERIA & CONSTRUCCION. SOLICITA

RELACION DE SOPORTE DE CALIFORNIA (C.B.R.)

(NORMA AASHTO T-193, ASTM D 1883)

LABORATORIO MECANICA DE SUELOS, CONCRETOS Y PAVIMENTOS									
LUGAR:	CALLE JUNIN TRAMO 01 - 02	TECNICO	F.M.V						
KM. :	0	ING. RESP.	W.M.M.						
MATERIAL:	0	FECHA	14/03/2017						
LADO :	0								

	DATOS DE LA MUESTRA						
CALICATA	: 01						
MUESTRA	: 01	CLASF. (SUCS)	£5				
PROFUNDIDAD	(m) : 1.50	CLASF. (AASHTO)	100	1			


METODO DE COMPACTACION : AASHTO T-180 MAXIMA DENSIDAD SECA (g/cm3) : 1.823 OPTIMO CONTENIDO HUMEDAD (%) : 17.00 95% MAXIMA DENSIDAD SECA (g/cm3) : 1.732

C.B.R. al 100% de M.D.S. (%)	0.1":	12.7	0.2":	21.4
C.B.R. al 100% de M.D.S. (%) C.B.R. al 95% de M.D.S. (%)	0.1":	8.0	0.2":	16.1

RESULTADOS:

Valor de C.B.R. al 100% de la M.D.S. 13% Valor de C.B.R. al 95% de la M.D.: 8%

OBSERVACIONES:

DEPARTAMENTO DE CONTROL DE CALIDAD

ISIS MECANICO POR TAMIZADO NTP 339.

AASHTO Y-SB Y ASTM B-1422

SOLICITA / PETICIONARIO:

MUNICIPALIDAD DISTRITAL DE ACO

PROYECTO / OBRA

UBICACIÓN DE OBRA

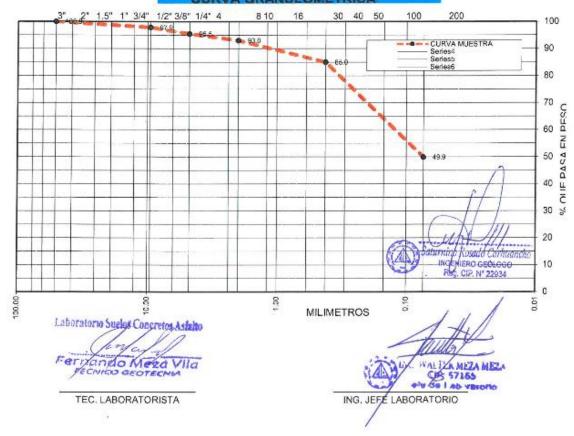
:Mejoramiento de los Servicios de Transitabilidad Yehicular y Peatonal de las Yias Inters del Barrio de Chaupimarca de la localidad de Aco. Provincia de Concepcion - Junin.

MUESTRA

CALICATA Nº 01 - Muestra Nº 01 ING.RESP.: Walter M.M.

FECHA :

Distrito ACO TECNICO: F.M.V.


CONCEPCION Provincia

14 de Marzo 2017

Departamento: JUNIN

TAMIZ	ABERT. mm.	PESO RET.	%RET.	%RET. AC.	% Q' PASA	ESPECIF	DESCRIPCION DE LA MUESTRA
4"	101.600						CALICATA : Nº 01
3"	76.200						UBICACIÓN : Calle Junin Tramo 01
2 1/2"	63.500						MUESTRA : Nº 01
2"	50.800						MATERIAL : TERRENO NATURAL
1 1/2"	38.100						TAMAÑO MAX. : 2*
1*	25.400						PESO TOTAL : 845.49 gr.
3/4*	19.050	0					LIMITE LIQUIDO : 30.00
1/2"	12.700				100.0		INDICE PLAST. : 7.70
3/8"	9.525	18.00	2.1	2.1	97.9		HUM. NATURAL : 10.00 %
1/4"	6.350	11.00	1.3	3.4	96.6		sucs : SC
# 4	4.760	9.00	1.1	4.5	95.5		AASHTO : A - 4 (2)
#8	2.380	14.00	1.7	6.2	93.8		HUM, OPTIMA :
# 10	2.000	7.00	0.8	7.0	93.0		DENSIDAD MAX. ;
# 16	1.190	8.00	0.9	7.9	92.1		CBR, ;
# 30	0.590	21.15	2.5	10.4	89.6		OBSERVACIONES:
# 40	0.420	38.64	4.6	15.0	85.0		
# 50	0.297	33.02	3.9	18.9	81.1		
# 100	0.149	201.33	23.8	42.7	57.3		Se clasifico con las coeficientes de.
# 200	0.074	62.35	7.4	50.1	49.9		Cu = 0.00
< # 200		422.00	49.9	100.0	0.0		Cc= 0.00

CURVA GRANULOMETRICA

ANALISIS MECANICO POR TAMIZADO NTP 339, 1

AASHTO T-89 Y ASTM D-1422

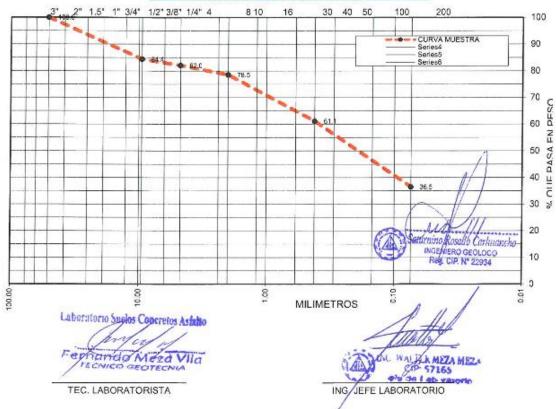
SOLICITA / PETICIONARIO: MUNICIPALIDAD DISTRITAL DE ACO

PROYECTO / OBRA : : : Mejoramiento de los Servicios de Transitabilidad Vehicular y Pentonal de las Vias Inters

del Barrio de Chaupimarca de la localidad de fico. Provincia de Concepcion - Junin.

MUESTRA : CALICATA Nº 02 - Muestra Nº 01

UBICACIÓN DE OBRA : ING.RESP.: Walter M.M.


 Distrito
 :
 ACO
 TECNICO: F.M.V.

 Provincia
 :
 CONCEPCION
 FECHA: 14 de Marzo 2017

Departamento: JUNIN

	Departament		JUNIN				
TAMIZ	ABERT. mm.	PESO RET.	%RET.	%RET. AC.	% Q' PASA	ESPECIF	DESCRIPCION DE LA MUESTRA
4"	101.600						CALICATA : Nº 02
3*	76.200						UBICACIÓN : Calle Junin Tramo 02
2 1/2"	63.500						MUESTRA : Nº 01
2"	50.800						MATERIAL : TERRENO NATURAL
1 1/2"	38.100				100.0		TAMAÑO MAX. : 2"
1"	25.400	21.00	2.0	2.0	98.0		PESO TOTAL : 1052 gr.
3/4"	19.050	39.00	3.7	5.7	94.3		LIMITE LIQUIDO : 29.50
1/2"	12.700	85.00	8.1	13.8	86.2		INDICE PLAST. : 7.60
3/8*	9.525	19.00	1.8	15.6	84.4		HUM, NATURAL : 11.20 %
1/4"	6.350	14.00	1.3	16.9	83.1		sucs : SC
# 4	4.760	11.00	1.0	18.0	82.0		AASHTO : A -4 (0)
#8	2.380	22.00	2.1	20.1	79.9		HUM. OPTIMA :
# 10	2.000	15.00	1.4	21.5	78.5		DENSIDAD MAX. :
# 16	1.190	51.00	4.8	26.3	73.7		CBR. ;
# 30	0.590	75.00	7.1	33.5	66.5		OBSERVACIONES:
# 40	0.420	57.00	5.4	38.9	61.1		
# 50	0.297	48.00	4.6	43.4	56.6		
# 100	0.149	166.00	15.8	59.2	40.8		Se clasifico con las coeficientes de.
# 200	0.074	45.00	4.3	63.5	36.5		Cu = 0.00
< # 200		384.00	36.5	100.0	0.0		Cc= 0.00

CURVA GRANULOMETRICA

LMSG-GEOTECNLA LABORATORIO DE SUELOS Y MATERIALES

Departamento control de calidad

LIMITES DE ATTERBERG NTP 339 129 (99)

SOLICITA/PETICIONARIO:

MUNICIPALIDAD DISTRITAL DE ACO

PROYECTO / OBRA

:Mejoramiento de Servicios Transitabilidad Yehicular y Pentonal de las Yias Internas del Barrio de Chaupimarca de la localidad de Roo, Provincia de Concepcion - Junin.

NINUL

MUESTRA

CALICATA Nº 01 - Muestra Nº 01

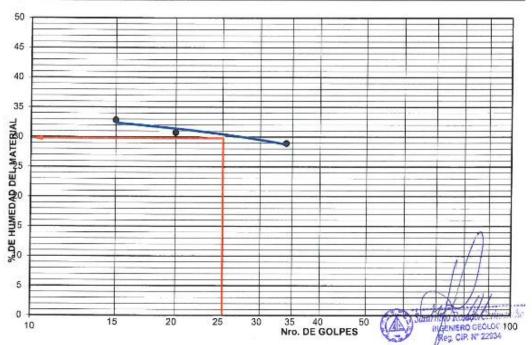
ING.RESP.: Walter M.M.

UBICACIÓN DE OBRA :

TECNICO: F.M.V. FECHA :

14 de Marzo 2017

Distrito Provincia


CONCEPCION

Departamento:

JUNIN

ACO

	METO	DO AASHTO	T-89/90 Y	ASTM D-423	/424				
		LIMIT	E LIQI	JIDO			LIMITE	E PLA	STICO
Nro. DE CAPSULA	14	12	8	1		4	10		
PESO TARA + SUELO HUMEDO (A)	38.57	38.43	38.48	1		30.24	30.34	1	1 22.5
PESO TARA + SUELO SECO (B)	34.91	35.06	35.29	1		29.13	29.18	1	II 22.1
PESO DE LA TARA (C)	23.77	24.10	24.27	1		24.19	23.93	1	III 0.0
PESO DEL AGUA (A-B)	3.66	3.37	3.19			1.11	1.16		= 22.3
PESO SUELO SECO (B-C)	11.14	10.96	11.02		1	4.94	5.25	1	
HUMEDAD [W=(A-B)/(B-C)*100	32.85	30.75	28.95		1	22.47	22.10	1	N.
Nro. DE GOLPES	15	20	34		1	1	H.	III	

LIMITE LIQUIDO LIMITE PLASTICO INDICE PLASTICO LL.: % 30.0 LP.: 22.3 IP. : 7.7 OBSERVACIONES:

Laboratorio Syelor Concretos Asfalto

Fernando Meza Vila TEC. LABORATORISTA

ING. JEFE LABORATORIO

CID STAGS

LMSG-GEOTECNLA LABORATORIO DE SUELOS Y MATERIALES

Departamento control de calidad

LIMITES DE ATTERBERG NTP 339 129 (99)

SOLICITA/PETICIONARIO:

MUNICIPALIDAD DISTRITAL DE ACO

PROYECTO / OBRA

:Mejoramiento de Servicio: Transitabilidad Yehicular y Peatonal de las Yias Interna del Barrio de Chaupimaroa de la localidad de Roc. Provincia de Concepcion - Juni

JUNIN

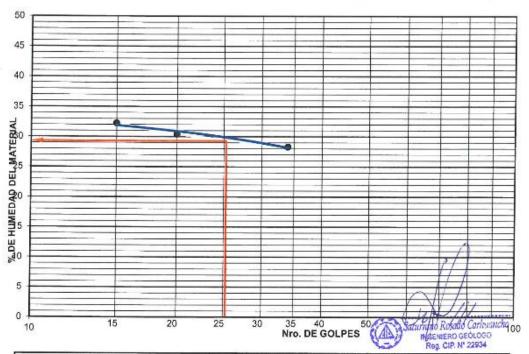
MUESTRA

CALICATA Nº 02 - Muestra Nº 01

ING.RESP.: Walter M.M.

UBICACIÓN DE OBRA :

TECNICO: F.M.V.


Distrito : ACO

FECHA : 14 de Marzo 2017

Provincia : CONCEPCION

Departamento: JUNIN

	MET	DO AASHTO	T-89/90 Y	ASTM D-42	3/424						
		LIMIT	TE LIQ	UIDO	LIMITE PLASTICO						
Nro. DE CAPSULA	28	15	12			10	9				
PESO TARA + SUELO HUMEDO (A)	39.07	38.52	38.24			29.25	29.38		22.0		
PESO TARA + SUELO SECO (B)	35.58	35.17	35.12			28.29	28.51		21.8		
PESO DE LA TARA (C)	24.76	24.16	24.10	1		23.93	24.52		0.0		
PESO DEL AGUA (A-B)	3.49	3.35	3.12			0.96	0.87		21.9 %		
PESO SUELO SECO (B-C)	10.82	11.01	11.02			4.36	3.99	\			
HUMEDAD [W=(A-B)/(B-C)*100	32.26	30.43	28.31			22.02	21.80	/			
Nro. DE GOLPES	15	20	34		1	i	11	Ш			

LIMITE LIQUIDO LIMITE PLASTICO INDICE PLASTICO

LL.: 29.5 % LP.: 21.9 % IP.: 7.6 %

OBSERVACIONES:

Laboratorio Sueles Concretos Astelho

Fernando Meta VIIa

Saturnino Resado Cerhueno) INGENIERO GEOLOGO Reg. CIP. N° 22934 ALTI RMEZA MEZA CID 57165

REGISTRO DE EXPLORACION PROYECTO: :Mejoramiento de las Jerricias de Transitabilidad Ychiovias y Peatonal de las Yias Interna Pozo : C-1 del Barrio de Chaupimarca de la localidad de Roo. Provincia de Concepcion - Junin. UBICACIÓN ORUE JUNIN TRAMO OI Prof. : 1.50 DISTRITO ACO - PROVINCIA CONCEPCION - DEPARTAMENTO JUNIN. N.F. : NO SOLICITA MUNICIPALIDAD DISTRIAL DE ACO 14/03/2017 Fecha: PROF **DESCRIPCION DEL MATERIAL** (m) MUESTRA SIMBOLO 0.05 0.10 0.15 0.25 RELLENO 0.30 0.36 SUELO ALTERADO CON MATERIAL CONTAMINADO 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 E-2 0.95 1.00 1.05 1.10 suelo de marron oscuro formado por limos organicos, gravas, gravillas 1,15 en forma aisladas, suelo no homogêneo suelo de baja resistencia, suelo 1.20 mediana compacidad, mediana plasticidad, y mediana humedad 1.30 SC 1.35 1.40 1,45 1.50 1.60 SE HIZO LA EXCAVACION A 1,50 DE ALTURA DE LA PROFUNDIDAD DEL TERRENO 1.65 1.70 1.80 1.85 1.90 1.95 2.00 2.05 2.10 2.15 2.20 2.25 2.30 umpro Rasead Carbuano INGENIERO GEÓLOGO Res CIP Nº 22934 2.35 2.40 2.45 2.50 2.55 2.60 2.65 A CIELO ABIERTO 2.70 2.75 2.80 2.85 2.95 Laboratorio Suelos Concretos Asfalto 3.00 Fernando Meza VIIIa 3.05 3.10 3.15 3.20

REGISTRO DE EXPLORACION PROYECTO: :Mejaramiento de los Serricios de Transitabilidad Vehicular y Pentonal de las Vias Interna Pozo : C-2 del Barrio de Chaupimaroa de la localidad de Roo. Provincia de Concepcion - Junin. UBICACIÓN **CALLE JUNIN TRAMO 02** Prof. : 1.50 DISTRITO ACO - PROVINCIA CONCEPCION - DEPARTAMENTO JUNIN. N.F. : NO SOLICITA MUNICIPALIDAD DISTRIAL DE ACO Fecha: 14/03/2017 PROF. **DESCRIPCION DEL MATERIAL** MUESTRA (m) SUCS SIMBOLO EXCAVACION 0.05 0.10 E - 1 SUELO ALTERADO CON MATERIAL CONTAMINADO 0.15 RELLENC 0.20 0.25 0.30 0.35 0.40 0.45 0.55 0.60 0.65 0.70 0.75 0.80 0.85 SC suelo de marron oscuro formado por arcilias con mezcika de limos , gravillas en forma aisladas, suelo no homogêneo suelo de baja resistencia, suelo mediana compacidad, mediana plasticidad, y mediana humedad 0.90 E-2 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50 1.55 1.60 SE HIZO LA EXCAVACION A 1.50 DE ALTURA DE LA PROFUNDIDAD DEL TERRENO 1.65 1.75 1.85 1.90 1.95 2.00 2.05 2.10 2.15 2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70 A CIELO ABIERTO 2.75 WALTELMEZ Laboratorio Syelas Concretos Asfaho 2.85 5716 2.90 2.95 3,00 Fernando Meza VIIa 3.05 Saturn ho Rosedo Carlmancho 3.10 3.15 Reg. CIP. Nº 22934 3.20

C. ESTUDIOS DE TRAFICO

C.1. CALCULO DEL ÍNDICE MEDIO DIARIO

Para calcular el IMD, se toman mediciones del tráfico durante un período de tiempo específico, los datos obtenidos se promedian para obtener el número medio de vehículos que pasan por la carretera en un día determinado. Este número se utiliza para determinar el ancho, la resistencia y otros aspectos del diseño de la carretera. El IMD del proyecto es de 44 vehículos por día.

Tabla 20: Resultado del Conteo de Tráfico Vehicular

	Auto	S.	Ca	Camionetas			Omnibus			Camion			Semitraylers						Traylers				
	móvil	Wagon	Pick Up	Panel	Rural	Micro	2E	3E	4E	2E	3E	4E	2S1	2S2	2S3	3S1	3S2	>=3S3	2T2	2T3	3T2	>=3T3	
DIA 1	19	13	5	1	2	2	1	1	0	4	2	1	1	1	0	0	1	0	0	0	0	0	
DIA 2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
DIA 3	17	12	5	1	2	3	1	1	0	4	2	1	1	1	0	0	2	0	0	0	0	0	
DIA 4	18	9	4	1	2	3	1	1	0	4	2	1	1	0	0	1	2	0	0	0	0	0	
DIA 5	15	12	5	1	2	3	1	1	0	4	2	1	1	1	0	0	1	0	0	0	0	0	
DIA 6	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
DIA 7	19	13	5	1	2	4	1	1	0	5	3	1	2	1	0	0	1	0	0	0	0	0	
IMDs	13	9	4	1	2	3	1	1	0	3	2	1	1	1	0	1	1	0	0	0	0	0	

Fuente: Elaboración Propia

C.2. FACTORES DE CORRECCIÓN

Debido a que el tráfico de vehículos se muestrea durante los 7 dias de la semana es necesario evaluar el comportamiento del tráfico anual para determinar el IMDA, se debe usar un volumen para extender esta muestra a un intervalo anual de acuerdo con la Guía de recubrimientos AASHTO 93.

Tabla 21: Factor de corrección para vehículos

Estación: CHACAPAMPA – JUNÍN (mes marzo)											
Factor de corrección	Veh. Livianos	fe:	0.9986								
estacional	Veh. Pesados	fe:	0.9856								

Fuente: Ficha Técnica Estándar para la formulación y evaluación de proyectos de inversión en carreteras interurbanas, 2017.

Tabla 22: Corrección de Vehículos

1		Auto	S.	С	amioneta	is	Micro	(Omnibu	S	Camion			Semitraylers						Traylers			
		móvil	Wagon	Pick Up	Panel	Rural	IVIICIO	2E	3E	4E	2E	3E	4E	2S1	2S2	2S3	3S1	3S2	>=3S3	2T2	2T3	3T2	>=3T3
	DIA 1	19	13	5	1	2	2	1	1	0	4	2	1	1	1	0	0	1	0	0	0	0	0
	DIA 2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	DIA 3	17	12	5	1	2	3	1	1	0	4	2	1	1	1	0	0	2	0	0	0	0	0
	DIA 4	18	9	4	1	2	3	1	1	0	4	2	1	1	0	0	1	2	0	0	0	0	0
	DIA 5	15	12	5	1	2	3	1	1	0	4	2	1	1	1	0	0	1	0	0	0	0	0
	DIA 6	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	DIA 7	19	13	5	1	2	4	1	1	0	5	3	1	2	1	0	0	1	0	0	0	0	0
	IMDs	13	9	4	1	2	3	1	1	0	3	2	1	1	1	0	1	1	0	0	0	0	0
2023	IMDa	13	9	4	1	2	3	1	1	0	3	2	1	1	1	0	1	1	0	0	0	0	0

Fuente: Elaboración Propia

Se obtuvieron un IMDA de 44 Vehículos.

C.3. PROYECCIONES DE TRÁNSITO FUTURO

La proyección del tráfico futuro es un aspecto clave en la planificación del diseño de carreteras y la toma de decisiones de inversión. Se utilizan diversas técnicas para proyectar el volumen de tráfico en una carretera en el futuro, incluyendo modelos estadísticos, análisis de tendencias, análisis de datos históricos y consideración de factores externos como el crecimiento poblacional y el desarrollo urbano. Estas proyecciones se utilizan para determinar la capacidad de la carretera, el número de carriles necesarios y otras características de diseño, así como para planificar la expansión o mejora de la infraestructura de transporte existente.

C.4. VIDA ÚTIL DEL PAVIMENTO

La vida útil del pavimento asfáltico puede variar dependiendo de diversos factores, como el tipo de tráfico que soporta, el clima, la calidad de los materiales utilizados, el mantenimiento y la reparación. En promedio, se espera que un pavimento asfáltico dure entre 20 y 30 años. Sin embargo, con un mantenimiento adecuado, como el sellado y el relleno de grietas, y reparaciones oportunas, la vida útil del pavimento se puede extender hasta 25 años o más. Es importante tener en cuenta que la vida útil del pavimento asfáltico también puede verse afectado por factores externos, como el crecimiento urbano y los cambios en el volumen y tipo de tráfico en la carretera.

C.5. TASAS DE CRECIMIENTO

La tasa de incremento de vehículos varía según el tipo de vehículo; se determinan a partir de secuencias de tráfico históricas basadas en estudios previos del tramo de carretera examinado u otras carreteras de naturaleza similar. En los casos que no cuente con datos históricos o ésta sea escasa, un enfoque alternativo o complementario es el análisis de elasticidad de variables macroeconómicas (PIB, población, etc.) en el área de dominio del proyecto.

Tabla 23: Tasa de Crecimiento Vehicular

T.C. Vehícu	ulos Ligeros	T.C. Vehículos Pesados						
	TC		PBI					
Junín	0.77 %	Junín	3.90 %					

Fuente: FTE del MTC, 2017.

C.6. VOLUMEN DE TRAFICO FUTURO

El volumen de tráfico proyectado es una estimación del número de vehículos que se espera que circulen por una carretera o una sección de carretera en un período de tiempo determinado en el futuro. Esta proyección se basa en una serie de factores, como el crecimiento de la población, el desarrollo económico, el aumento del uso de automóviles y otros vehículos, las tendencias históricas de tráfico y las políticas de transporte.

Tabla 24: Volumen de Transito Proyectado

		Auto	S.	С	amioneta	as	Micro	Omnibus				Camion Semitraylers							Traylers				
		móvil	Wagon	Pick Up	Panel	Rural	IVIICIO	2E	3E	4E	2E	3E	4E	2S1	2S2	2S3	3S1	3S2	>=3S3	2T2	2T3	3T2	>=3T3
2033	Total	14	10	5	2	3	4	2	2	0	5	3	2	2	2	0	2	2	0	0	0	0	0

Fuente: Elaboración Propia

Con proyección al 2033 se obtuvieron 60 vehículos.

C.7. CALCULO ESAL

Se utiliza en ingeniería de carreteras y pavimentos para calcular la carga de tráfico que pasa por una carretera. La carga de tráfico se mide en términos del número de ejes equivalentes a una carga unitaria de 80 kN en un eje simple. Esto permite al ingeniero de pavimentos comparar el efecto de diferentes tipos de vehículos y cargas en la carretera y determinar la capacidad y la durabilidad del pavimento. La ESAL es una herramienta importante para la evaluación del impacto del tráfico en las carreteras y la planificación de la construcción y el mantenimiento de carreteras.

Tabla 25: Calculo de Esal por Vehículo

TIPO D	TIPO DE VEHI CULO		TIPO	NUMERO	CARGA	"f" P.	f. IMDA
пов	L VEIII COLO	2033	EJE	LLANTAS	EJE Tn	FLEXIBLE	FLEXIBLE
	Autos	14.00	SIMPLE	2	1	0.000527017	0.007378232
		14.00	SIMPLE	2	1	0.000527017	0.007378232
	S. Wagon	10.00	SIMPLE	2	1	0.000527017	0.005270166
		10.00	SIMPLE	2	1	0.000527017	0.005270166
	Pick Up	5.00	SIMPLE	2	1	0.000527017	0.002635083
VEHICULO		5.00	SIMPLE	2	1	0.000527017	0.002635083
S LIGEROS	Panel	2.00	SIMPLE	2	1	0.000527017	0.001054033
		2.00	SIMPLE	2	1	0.000527017	0.001054033
	Rural	3.00	SIMPLE	2	1	0.000527017	0.00158105
		3.00	SIMPLE	2	1	0.000527017	0.00158105
	Micros	4.00	SIMPLE	2	1	0.000527017	0.002108066
		4.00	SIMPLE	2	1	0.000527017	0.002108066
	2E	2.00	SIMPLE	2	7	1.265366749	2.530733497
OMNIBUS —		2.00	SIMPLE	4	11	3.238286961	6.476573921
OMNIBUS	3E	2.00	SIMPLE	2	7	1.265366749	2.530733497
		2.00	TANDEM	6	16	1.365944548	2.731889096
	2E	5.00	SIMPLE	2	7	1.265366749	6.326833744
		5.00	SIMPLE	4	11	3.238286961	16.1914348
CAMIÓN	3E	3.00	SIMPLE	2	7	1.265366749	3.796100246
CAMION		3.00	TANDEM	8	18	2.019213454	6.057640362
	4E	2.00	SIMPLE	2	7	1.265366749	2.530733497
		2.00	TRIDEM	10	23	1.508183597	3.016367195
	2S1	2.00	SIMPLE	2	7	1.265366749	2.530733497
		2.00	SIMPLE	4	11	3.238286961	6.476573921
		2.00	SIMPLE	4	11	3.238286961	6.476573921
	2S2	2.00	SIMPLE	2	7	1.265366749	2.530733497
		2.00	SIMPLE	4	11	3.238286961	6.476573921
SEMITRAY		2.00	TANDEM	8	18	2.019213454	4.038426908
LERS	3S1	2.00	SIMPLE	2	7	1.265366749	2.530733497
		2.00	TANDEM	8	18	2.019213454	4.038426908
		2.00	SIMPLE	4	11	3.238286961	6.476573921
	3S2	2.00	SIMPLE	2	7	1.265366749	2.530733497
		2.00	TANDEM	8	18	2.019213454	4.038426908
		2.00	TANDEM	8	18	2.019213454	4.038426908

Tabla 26: Calculo de Esal

Calculo de Esal Pav	imento fle	exible
Tasa anual de crecimiento Vehículos pesados	r:	3.90 %
Tiempo de vida útil de pavimento (años)	n:	10
Factor Fca vehículos pesados $Factor Fca = \frac{(1+r)^n - 1}{r}$	Fca	11.95
N° de calzadas, sentidos y carriles por sentido		1 calzada, 1 sentido carril por sentido
Factor direccional*Factor carril (Fd*Fc)	Fc*Fd	1.00
Número de ejes equivalentes (ESAL) $\#EE = 365 * (\Sigma f.IMDa) * Fd * Fc * Fca$	ESAL	455 441

D. ESTUDIO DE IMPACTO AMBIENTAL

D.1. CARACTERIZACIÓN DE IMPACTOS POTENCIALES:

La identificación de impactos ambientales es el proceso de evaluación y predicción de los efectos potenciales de un proyecto, actividad o acción en el medio ambiente. Este proceso implica la identificación de todos los posibles impactos ambientales, incluidos aquellos relacionados con la calidad del aire, el agua, el suelo, la biodiversidad, el paisaje y la salud humana.

D.2. DETERMINACIÓN DE LOS IMPACTOS POTENCIALES DEL PROYECTO: EFECTOS DIRECTOS DURANTE SU CONSTRUCCIÓN

Hay varias etapas de construcción, así que describa cada etapa para determinar el impacto potencial:

Trabajos Preliminares:

Se habilitarán ambientes para almacén de obra, habrá casos de fugas de gases de combustión y lubricantes que impactan en la etapa de transporte de los equipos, estos casos son muy pequeños y deben ser reducidos con la colaboración de expertos en relación con los mandatos y las operaciones.

Movimiento de Tierras:

Al implementar este proyecto, se utilizarán diversos equipos pesados, por ejemplo: cargadores frontales, niveladoras, apisonadoras, etc. Trabajar con hidrocarburos también contamina el medio ambiente y contamina el suelo y el agua con aceite, grasa, etc. residuos inevitables, Además, serán removidos y enterrados permanentemente en el sitio.

También hay cambios en canteras, especialmente en zonas de vehículos, donde es imposible evitar la fuga de gases de combustión, aceite y grasas, así como la formación de charcos y lodos.

EFECTOS DIRECTOS PERMANENTES

No habrá daños a los edificios ni a las carreteras, sino que habrá cambios temporales mínimos en preparación para la pavimentación.

Excepto como se describe anteriormente, no habrá interrupción del drenaje subterráneo o superficial, y no habrá deslizamientos de tierra, sumideros, deslizamientos de tierra o cierres de carreteras.

Ni el trabajo en sí mismo ni las áreas utilizadas para campamentos o patios de máquinas estropean la vista en el lugar de trabajo.

La flora y fauna terrestre no se verá afectada.

Debido a la seguridad de su diseño y ejecución, no existe riesgo de accidentes relacionados con el tráfico y transporte de vehículos.

EFECTOS INDIRECTOS

A medida que se desarrolle el proyecto, se harán posibles nuevos lugares, optimando la eficacia de vida de los residentes que trabajarán en su implementación.

EVALUACIÓN DE LOS IMPACTOS AMBIENTALES

Se evalúa la magnitud y la importancia de los impactos ambientales identificados. Esto implica la consideración de factores como la magnitud, la duración, la frecuencia, el alcance y la reversibilidad de los impactos.

Tabla 27: Evaluación de los Impactos Ambientales

I abia Z	de los impactos Ambi	ciliales								
MAGNITUE) (M)	MITIGABILIDAD (mi)								
GraveFuerteModeradaLeveMuy Leve	0.80 - 1.00 0.61 - 0.80 0.41 - 0.60 0.21 - 0.40 0.00 - 0.20	No mitigablePoco mitigableMedio mitigableAltamente mitigable	1.00 0.81 - 0.99 0.51 - 0.80 0.00 - 0.50							
VELOCIDA	AD (v)	DURACIÓN	(d)							
Muy rápida (horasRápida (días)	0.81 – 1.00 0.61 – 0.80	Muy larga (lustros)Larga (años)	0.81 - 1.00 0.61 - 0.80							

Mediana (semanas) 0.41 – 0.60 - Media (meses)

0.00 - 0.20 -

ANÁLISIS DE RESULTADOS

Lenta (meses)Muy lenta (años)

Dado que los valores de todos los parámetros involucrados en la evaluación van de 0 a 1, el valor de evaluación estará dentro de este rango, y cuanto más cerca esté la evaluación de 1, más fuerte será el efecto.

0.21 – 0.40 - Corta (semanas)

Muy corta (días)

En general, definimos cinco intervalos en función de los valores de calificación obtenidos, que nos permiten analizar la sensibilidad al impacto. Estos rangos efectivos se pueden utilizar para analizar los efectos de cualquier acción sobre los elementos y los efectos de cualquier proyecto sobre los componentes, los sistemas y el medio ambiente:

0.41 - 0.60

0.21 - 0.40

0.00 - 0.20

Tabla 28: Grado de Sensibilidad de un Impacto

Graso de Sensibilidad de un Impacto										
Impactos muy leves (ML)	0.00 - 0.20									
Impactos leves (L)	0.21 - 0.40									
Impactos ligeramente severos (LS)	0.41 - 0.50									
Impactos severos (S)	0.51 - 0.75									
Impactos muy severos (MS)	0.76 - 1.00									

Tabla 29: Clasificación Ambiental en de Valores en Base a la Significancia Ambiental del Impacto (SI)

Ambiental del impacto (SI)					
SIST.	COMP.	ELEMENT O	ACTIVIDAD	VAL.	SIGNIFICANCIA AMBIENTALES
		Partículas	Movimiento de tierras. Excavación de material en cada actividad del proyecto	0.40	Impactos Leves
	AIRE	Niveles sonoros	Movimiento de Tierras. Corte de roca suelta	0.09	Impactos muy leves
		Gases	Desprendimiento de gases al usar equipos y maquinaria.	0.40	Impactos leves
		Sólidos en suspensión	Extracción y acarreo de material de cantera de tingo chico	0.48	Impactos ligeramen severos
FÍSICO	AGUA	Contamina ción	Extracción y acarreo de material de cantera.	0.32	Impactos leves
ш		Dinámica fluvial	Extracción y acarreo de material de cantera	0.27	Impactos leves
	SUELO	Compactaci ón	En el almacén y cimentación de la estructura	0.48	Impactos ligeramen severos.
		Erosión	Movimiento de tierras.	0.55	Impactos severos
			Acciones antrópicas	0.59	Impactos severos
		Contamina ción	Campamento(almacén)	0.45	Impactos ligeramen severos
0			Roce y Limpieza	0.33	Impactos leves
віо́тісо	FLORA	Población	Campamento, estructuras de concreto, etc.	0.30	Impactos leves
ш	C	Migración	Roce y Limpieza.	0.25	Impactos leves
		Costo de vida	Operación del Local	0.00	Impacto positivo
SOCIO ECONÓMICO	ECONO MÍA	Empleo	Estructura de dos niveles	0.00	Impacto positivo
္မ		Salubridad	Campamento	0.05	Impactos muy leves
0	SVI IID		Movimiento de Tierras:	0.48	Impactos ligeramen
SOCI	SALUD	Riesgo	Extracción y acarreo de material.	0.42	severos Impactos ligeramen severos
	IDENTI DAD	Arraigo	Ejecución de Obra – Operación de la Obra.	0.39	Impactos leves

Valoración de Impacto Ambiental = VIA = 0.32 (Impactos Leves).

D.3. PLAN DE MANEJO AMBIENTAL

El objetivo del PMA es garantizar que la actividad o proyecto se desarrolle de manera responsable y sostenible, minimizando los impactos ambientales negativos y maximizando los impactos positivos. El PMA es una herramienta importante para garantizar la protección del medio ambiente y la salud humana, y para cumplir con las normativas y condiciones ambientales establecidas.

D.4. PLAN DE MITIGACIÓN

Con base en los impactos potenciales del proyecto previamente identificados, esta sección propone un plan para mejorar el estado del proyecto, que se resume a continuación:

Trabajos Preliminares

Se deben realizar trabajos iniciales como calificación de almacenamiento ya que se deben contener los materiales e insumos para evitar derrames y/o derrames y se debe capacitar al personal en la disposición adecuada de desechos, personas, intentos de entierro y/o cremación.

La máquina debe estar en perfecto estado de funcionamiento: un operador idóneo no debe perder combustible ni aceite lubricante, y el motor debe funcionar perfectamente.

Almacenamientos de materiales deshechos

Los cuartos de almacenamiento de mercancías inflamables o peligrosas (combustible, aceite lubricante, etc.) deben ubicarse lejos de los campamentos de personal y de los ríos para evitar eventos que perturben a los trabajadores y transeúntes, y deben complementarse con una buena ventilación.

D.5. PLAN DE ABANDONO

CRITERIOS

- La planificación de abandono es una serie de actividades para salir del área de trabajo, es decir, maquinaria, equipo, herramientas, materiales de desecho, campamentos, etc. retiro una vez finalizada la obra.
- El plan debe tomar medidas para evitar impactos ambientales negativos por los efectos de la contaminación residual que pueda existir o aparecer después de la finalización del proyecto.
- El plan debe ser definitivo, ya que la obra se trasladará al departamento correspondiente, que se ocupará de la descontaminación, restauración y demás medidas necesarias para devolver el área a su estado ambiental original.

ALCANCES

Ciertas acciones deben garantizar que el sitio:

- No pondrá en riesgo la salud y seguridad de los individuos, la flora y la fauna.
 Ningún impacto negativo sobre el medio ambiente.
- Apto para el uso previsto.
- Asuntos legales que no se convierten en beneficiarios.
- Hermoso.

REQUISITOS MÍNIMOS

- Desarrolle un plan de exclusión voluntaria o retiro.
- Retiro de máquinas, equipos, herramientas y otros.
- Desinfectar y limpiar a fondo las instalaciones.
- Rehabilitación integral de locales operativos.

SECUENCIA DEL PLAN

- Inspección del sitio: incluye la identificación visual de señales de contaminación dentro y fuera de la instalación, maquinaria y equipo a ser removido y vegetación circundante. Se pueden tomar muestras de suelo para detectar y evaluar la contaminación por hidrocarburos y concreto y determinar su alcance.
- Demolición de objetos: es decir, máquinas, equipos, herramientas, materiales residuales, camping, etc. demolición.
- Los materiales de desecho, hidrocarburos y otras sustancias deben ser recogidos y trasladados y/o incinerados en otro lugar.
- Limpieza del sitio: Eliminación de toda la basura, basura, basura, basura, basura, basura, etc. Enviar al lugar correcto.
- Restauración del sitio: Esta es la fase final de la fase de abandono e incluye la restauración de la superficie del terreno a su estado natural original o uso previsto y aprobado, trabajos que incluyen relleno, reemplazo de suelo, retorno a contornos naturales, etc. El sistema organizativo está preparado para situaciones de emergencia, como desastres. Proteger el medio ambiente y los recursos humanos utilizables.

E. ESTUDIO DE SEÑALIZACIÓN

E.1. SEÑALES VERTICALES

Las señales verticales son señales de tráfico que se colocan en postes o soportes verticales a lo largo de las carreteras para proporcionar información importante a los conductores y peatones. Estas señales se clasifican en diferentes categorías según su forma y función. Para el proyecto se utilizaron señales R-1(PARE) la se describe a continuación:

(R-1) SEÑAL DE PARE

- Solo se utilizará para indicar a los conductores que se detengan.
- Octágono, 0,60 metros. Letras rojas y blancas y marco entre bordes paralelos.
- Se coloca en el lugar donde el vehículo debe detenerse, a no menos de 2 m del borde más cercano de la vía bloqueada; esta señal suele complementarse con marcas en la calzada correspondientes a líneas de parada, pasos de peatones.

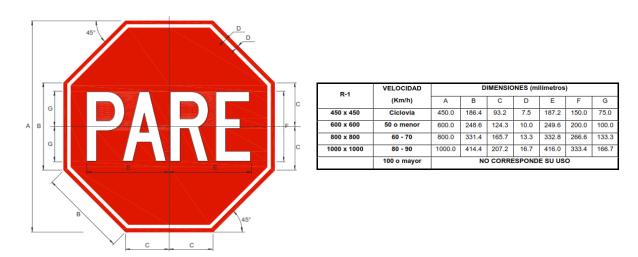
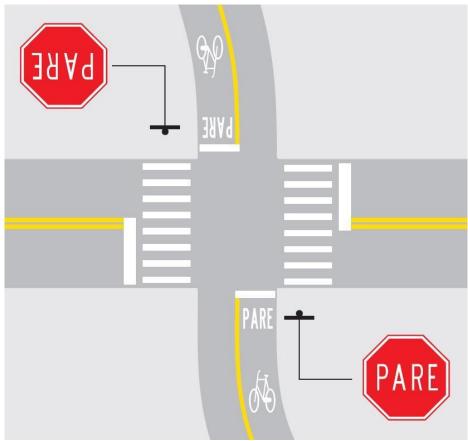


Imagen N° 5: Señal Pare (R-1)

Fuente: Manual de Dispositivos de control del tránsito automotor para calles y carreteras


E.2. MARCAS EN EL PAVIMENTO

Las marcas en los pavimentos consisten en líneas, flechas, símbolos y letras aplicados o superpuestos en pavimentos, bordillos, demás estructuras viales.

Se utiliza en la delimitación de carriles y caminos, señalar áreas donde está prohibido adelantar o cambiar de carril y áreas donde está prohibido estacionar; delimitación de carriles especiales por ejemplo, carril especial para bicicletas, motos, autobuses, etc.

El proyecto tiene en cuenta las líneas centrales, las líneas de parada, las líneas de transición y las flechas.

Imagen N° 6: Ejemplo de demarcación en el piso

Fuente: Manual de Dispositivos de control del tránsito automotor para calles y carreteras

Flecha recta (70 km/h o mayor) Flecha recta (60 km/h o menor) Área de Pintura = 1.30 m2 Nota: Dimensiónes en Metros

Imagen N° 7: Flechas Rectas

Fuente: Manual de Dispositivos de control del tránsito automotor para calles y carreteras

Flecha de giro (60 km/h o menor)

Flecha de giro (70 km/h o mayor)

Imagen N° 8: Flechas de Giro

Fuente: Manual de Dispositivos de control del tránsito automotor para calles y carreteras

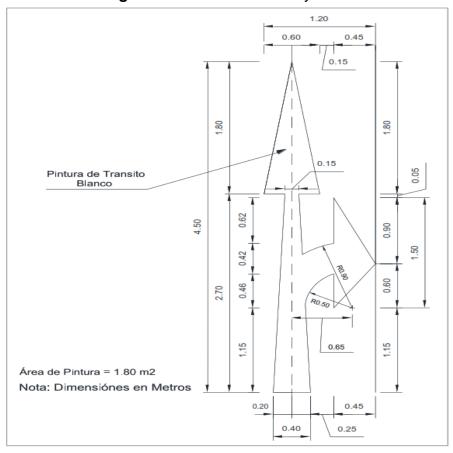


Imagen N° 9: Flechas Recta y de Giro

Fuente: Manual de Dispositivos de control del tránsito automotor para calles y carreteras

F. ESTUDIO DE RIESGO

RESUMEN DE ACCIONES REALIZADAS

Tabla 30: Resultados del Estudio de Riesgo

DESCRIPCIÓN DEL RIESGO	PRIORIDAD DEL RIESGO	ACCIONES PARA DAR RESPUESTA AL RIESGO
Existe el riesgo de que errores u omisiones en el diseño puedan afectar el costo o la eficacia de la obra.	Baja	Revisión de documentación técnica previa con observaciones asociadas de residentes y supervisores.
Riesgos de obras que resulten sobrecostosos durante la construcción, que pueden surgir por una variedad de razones, incluyendo aspectos técnicos, ambientales o regulatorios.	Baja	Responsable de los residentes y supervisores y coordinando las tareas asignadas entre los dos según el cronograma.
El riesgo de embargo de terrenos, cuando el aumento de los costos o la indisponibilidad del inmueble utilizado para la construcción provoquen retrasos en el inicio de las obras.	Baja	Se concluye un acuerdo mutuo entre las partes involucradas.
El riesgo geológico se refiere a las diferencias en las circunstancias ambientales o procesos geológicos en comparación con los previstos en los estudios de fase de formulación y organización, lo que resulta en sobrecostos o retrasos para la construcción.	Baja	Opinión pericial sobre el territorio y, si existe un problema de esta naturaleza, una solución consensuada del problema.
Riesgo de interrupción que resulte en sobrecostos y/o plazos de construcción debido a una caracterización y cuantificación deficientes de los servicios interrumpidos o afectados.	Baja	Un óptimo control de la maquinaria a utilizarse.
Riesgos ambientales asociados al riesgo de incumplimiento de las acciones correctivas especificadas en la normativa ambiental y	Baja	Un óptimo control de los materiales.

aprobaciones de estudios ambientales.

Riesgos relacionados con

accidentes de obra y daños a otros.

El riesgo arqueológico tiene como consecuencia el descubrimiento de restos arqueológicos significativos que interrumpen el normal desarrollo Un control de monitoreo. Baja del proyecto según los plazos contractuales o superan el coste de ejecución. Riesgo de obtener permisos y autorizaciones Falta de obtención de ciertos permisos y autorizaciones que deben ser emitidos por una Una óptima coordinación de las Baja autoridad gubernamental o no entidades beneficiadas. empleadora y obtenidos antes del comienzo de la construcción. Los riesgos causados por los trabajadores no pueden ser cedidos Charlas Con los responsables Baja a ninguna de las partes. del Proyecto. Riesgo regulatorio o regulatorio relacionado con la implementación de cambios regulatorios relevantes Acatar, dentro de todo lo Baja que puedan afectar los costos o los posible. plazos de trabajo.

Baja

Charlas de Seguridad y

Monitoreo del personal

G. INFORME DE SEGURIDAD Y SALUD OCUPACIONAL

En materia de seguridad y salud en el trabajo, planifica detalladamente las actividades a realizar en la instalación y se anticipa a las posibles perturbaciones que puedan ocurrir durante la ejecución de los trabajos, para lo cual utilizará funciones y actividades de control, incluyendo tareas, procedimientos de trabajo, presupuestos planificados, recursos y política de trabajo.

El propósito del programa es asegurar la salud y el bienestar de los trabajadores y cumplir con la normativa nacional aplicable. La planificación permite predecir la ejecución de actividades reales para solicitar los recursos necesarios en el momento adecuado y suele ser el mayor error en los proyectos de construcción y la principal razón de sus repetidos retrasos.

G.1. IDENTIFICACIÓN DE PELIGROS, EVALUACIÓN DE RIESGOS Y DETERMINACIÓN DE CONTROLES PARA TODAS LAS ACTIVIDADES COMPRENDIDAS EN EL PROYECTO.

Se preparará una matriz de identificación de peligros antes del trabajo para establecer un enfoque para la identificación de peligros, la evaluación de riesgos y las medidas de control para todas las actividades incluidas en los diversos flujos de trabajo para reducir el riesgo a un nivel que la organización asegure, puede tolerar.

Los procedimientos a seguir por los técnicos encargados de realizar los trabajos se detallarán en la matriz IPERC (Identificación de Peligros y Evaluación y Control de Riesgos) en los siguientes pasos:

- ETAPA I: Organización y Preparación
- ETAPA II: Identificación de Peligros
- ETAPA III: Identificación de Riesgos Asociados y Controles Existentes
- ETAPA IV: Evaluación de Riesgos
- ETAPA V: Controles Propuestos
- ETAPA VI: Reevaluación de Riesgos
- ETAPA VII: Gestión e Implementación de Controles Propuestos

H. DISEÑO DE PAVIMENTO

El diseño de pavimento es un proceso importante que implica la selección de la estructura adecuada del pavimento, el espesor de cada capa, la elección de los materiales y la construcción de una sub-base y base adecuada. Hay diferentes enfoques de diseño de pavimentos, pero los dos enfoques más comunes son el diseño de pavimentos flexibles y el diseño de pavimentos rígidos.

El diseño de pavimento flexible utiliza una estructura de capas que incluye una capa de rodadura, una capa de base y una subbase. La capa de rodadura es la capa superior de la estructura y es la que recibe el tráfico directamente. La capa de base se encuentra debajo de la capa de rodadura y se utiliza para distribuir el peso del tráfico sobre un área más amplia del suelo subyacente. La subbase se utiliza para proporcionar una base sólida debajo de la capa de base y para distribuir el peso del tráfico de manera uniforme.

H.1. METODOLOGÍA

La metodología utilizada para el proyecto es por el método AASHTO 1993, este utiliza un enfoque de diseño por capas, en el que el pavimento se compone de varias capas de diferentes materiales. El espesor de cada capa se determina en función de la carga prevista y las características de los materiales utilizados. El diseño también incluye la selección de materiales para la sub-base y la base del pavimento, el método tiene la siguiente expresión:

$$\log(N_{18}) = Zr * So + 9.36* \log_{10}(SN+1) - 0.20 + \frac{G_t}{0.40 + \frac{1094}{(SN+1)^5.19}} + 2.32* \log_{10}M_R - 8.07$$

Donde,

$$Gt = \log(\frac{pi - pt}{4.2 - 1.5})$$

Además,

N18: Número Total de Ejes Equivalentes, para el período de diseño.

Zr: Desviación Standard Normal (Área bajo la curva de distribución) correspondiente a la curva estandarizada, para una confiabilidad R

So: Desviación Standard de todas las variables

Pi : Serviciabilidad inicial.

Pt : Serviciabilidad final.

MR : Módulo de Resiliencia de la sub rasante.

De la ecuación anterior se determina el número estructural (SN), que es un parámetro utilizado en el diseño de pavimentos que indica la capacidad del pavimento para resistir el peso del tráfico. El SN se calcula sumando el espesor equivalente de cada capa del pavimento y dividiendo el resultado por un factor de equivalencia de carga (ESAL) que representa la cantidad de tráfico que se espera que use la carretera durante su vida útil. Las variables consideradas en el método AASHTO se describen a continuación:

$$SNT = a1.D1 + a2.m2.D2 + a3.m3.D3$$

donde,

SNT : Número Estructural Total requerido

a1, a2, a3 : coeficientes estructurales de los materiales

m2, m3 : coeficiente de drenaje de materiales granulares

D1, D2, D3: espesores asumidos de las capas.

H.2. RELACIÓN C.B.R. - MÓDULO DE RESILIENCIA

La relación entre el CBR y el Módulo de Resiliencia está relacionada con la capacidad de soporte de los suelos. En general, los suelos que tienen un alto valor de CBR tienen un alto valor de Módulo de Resiliencia, lo que significa que son capaces de soportar cargas repetidas y ciclos de carga y descarga sin deformarse permanentemente.

Por lo tanto, el CBR y el Módulo de Resiliencia son dos parámetros importantes que se utilizan en conjunto para evaluar la capacidad de soporte de los suelos y diseñar pavimentos y carreteras que sean seguros y duraderos.

Tabla 31: Módulo de Resilencia

Relacion del Módulo de resiliencia entre CBR	
Mr (psi) = 2555 CBR ^{0,64}	

H.3. PERIODO DE DISEÑO

Se entiende como al tiempo que toma al inicio del diseño para determinar las propiedades del pavimento y evaluar su comportamiento a largo plazo para varias alternativas para satisfacer las necesidades de servicio de la etapa de diseño seleccionado a un costo prudente.

Tabla 32: Periodos de Diseño en Función del Tipo de Carretera

Tipo de Carretera	Periodo de Diseño (Años)
Urbana de tránsito elevado.	30 – 50
Interurbana de tránsito elevado	20 – 50
Pavimentada de baja intensidad de tránsito	15 – 25
De baja intensidad de tránsito, pavimentación con grava	10 – 20

Fuente: AASHTO, Guide for Design of Pavement Structures 1993.

H.4. ÍNDICE DE SERVICIABILIDAD

El índice de servicio actual es el confort de conducción que se ofrece a los usuarios. Su valor va de 0 a 5. Un valor de 5 representa el mejor confort teórico, mientras que un valor de 0 representa el peor confort. Si las condiciones de las carreteras disminuyen debido al deterioro, también lo hace el PPI.

A. Serviciabilidad Inicial (Pi)

La seviciabilidad inicial (Pi) es el estado de la última carretera edificada. A continuación, se muestran los índices iniciales de los servicios para otros tipos de tráfico:

Tabla 33: Índice de Serviciabilidad Inicial (Pi) Según Rango de Trafico

TIPO DE CAMINOS	TRAFICO	EJES EQUIVALEN	EJES EQUIVALENTES ACUMULADOS	
	T _{P1}	150,001	300,000	3.80
Caminos de Bajo Volumen de	T _{P2}	300,001	500,000	3.80
Tránsito	T _{P3}	500,001	750,000	3.80
	T _{P4}	750 001	1,000,000	3.80

Fuente: Manual de Carreteras – Suelos, Geología, Geotecnia y Pavimentos

B. Serviciabilidad Final o Terminal (PT)

La serviciabilidad Final (Pt) es la situación de un camino que ha llegado a un punto donde se requiere algún tipo de rehabilitación o reconstrucción.

A continuación, se muestran los índices de idoneidad finales para los diferentes tipos de tráfico.

Tabla 34: Índice de Serviciabilidad Final (Pt) Según Rango de Trafico

TIPO DE CAMINOS	TIPO DE CAMINOS TRAFICO EJES EQUIVALENTES ACUMULADOS		INDICE DE SERVICIABILIDAD FINAL (PT)	
	T _{P1}	150,001	300,000	2.00
Caminos de Bajo Volumen de	T _{P2}	300,001	500,000	2.00
Tránsito	T _{P3}	500,001	750,000	2.00
	T _{P4}	750 001	1,000,000	2.00

Fuente: Manual de Carreteras – Suelos, Geología, Geotecnia y Pavimentos.

C. Variación de Serviciabilidad (ΔPSI)

La serviciabilidad se refiere a la capacidad de un sistema o servicio para satisfacer las necesidades y expectativas de los usuarios de manera efectiva y eficiente. La variación de serviciabilidad se refiere a los cambios en la calidad del servicio que se proporciona a lo largo del tiempo.

Tabla 35: Índice de Serviciabilidad Final (Pt) Según Rango de Trafico

TIPO DE CAMINOS	TRAFICO	EJES EQUIVALENT	EJES EQUIVALENTES ACUMULADOS	
	T _{P1}	150,001	300,000	1.80
Caminos de Bajo Volumen de	T _{P2}	300,001	500,000	1.80
Tránsito	T _{P3}	500,001	750,000	1.80
	T _{P4}	750 001	1,000,000	1.80

Fuente: Manual de Carreteras – Suelos, Geología, Geotecnia y Pavimentos

H.5. PARÁMETROS DE DISEÑO

H.5.1. Calculo del ESAL

Tabla 36: ESAL de Diseño

Calculo de Esal I	Pavimento flo	exible
	(Σf.IMDa)	104.412
Tasa anual de crecimiento Vehículos pesados	r:	3.90 %
Tiempo de vida útil de pavimento (años)	n:	10
Factor Fca vehículos pesados $Factor Fca = \frac{(1+r)^n - 1}{r}$	Fca	11.95
N° de calzadas, sentidos y carriles por sentido		1 calzada, 1 sentido, carril por sentido
Factor direccional*Factor carril (Fd*Fc)	Fc*Fd	1.00
Número de ejes equivalentes (ESAL) $\#EE = 365 * (\Sigma f.IMDa) * Fd * Fc * Fca$	ESAL	455 441

H.5.2. Soporte del Suelo para Diseño

Tabla 37: Proctor Modificado Diseño

Calicata	CBR AL 95%	TRAMO
C-01	8%	CALLE JUNÍN TRAMO 01 Y 02
C-01	8%	JOSÉ DE LA MAR TRAMO 01 Y 02
C-01	10%	CALLE ACO TRAMO 01, 02 Y 03
C-01	9%	CALLE BOLÍVAR TRAMO 01
C-01	7%	CALLE BOLOGNESI
C-01	8%	CALLE AYACUCHO
C-01	9%	CALLE CÁCERES TRAMO 01, 02 Y 03
C-01	9%	CALLE SAENZ PEÑA TRAMO 01, 02 Y 03
PROMEDIO	8.5%	MR(psi)=1051.23

H.5.3. FACTORES HIDROMETEREOLÓGICO

La ecuación AASHTO SN también requiere coeficientes de drenaje para las capas de base granular y la subbase. El objetivo de este factor es tener en cuenta el efecto del drenaje en la estructura del pavimento. El valor del coeficiente de drenaje está determinado por dos variables la calidad y la exposición a la saturacion.

La siguiente tabla muestra los valores del coeficiente de drenaje, en porcentaje cuando la estructura del pavimento está sometida a saturación y calidad de drenaje.

Tabla 38: Valores Recomendados de Coeficiente de Drenaje

CALIDAD DEL	P=% DEL TIEMPO EN QUE EL PAVIMENTO ESTA EXPUESTO A NIVELES DE HUMEDAD CERCANO A LA SATURACIÓN.				
DRENAJE	MENOR QUE 1%	1% - 5%	5% - 25%	MAYOR QUE 25%	
Excelente	1.40 – 1.35	1.35 - 1.30	1.30 – 1.20	1.20	
Bueno	1.35 – 1.25	1.25 – 1.15	1.15 – 1.00	1.00	
Regular	1.25 – 1.15	1.15 – 1.05	1.00 - 0.80	0.80	
Pobre	1.15 – 1.05	1.05 – 0.80	0.80 - 0.60	0.60	
Muy pobre	1.05 – 0.95	0.95 - 0.75	0.75 - 0.40	0.40	

Fuente: Guía de Diseño de Estructuras de Pavimentos AASHTO - 1993

El tramo en estudio se encuentra con altitudes que varían desde 3450 metros a 3490 msnm y su clima es húmedo.

Por lo tanto, se utilizará para la reclamación el factor de drenaje estándar de diseño AASHTO de 1, dado a que el porcentaje de saturación que estara expuesto el pavimento será superior al 25%.

H.6. APLICACIÓN DEL MÉTODO PARA EL DISEÑO DEL PAVIMENTO

DISEÑO DE PAVIMENTO FLEXIBLE				
Cargas de tráfico vehicular impuestos al pavimento			455 441	
Suelo de la subrasante		CBR =	8.5 %	
Módulo de resiliencia de la subrasante	$Mr(psi) = 2555x CBR^{0.64}$	MR (psi)=	10051.23	
Tipo de tráfico	VERDADERO	Tipo:	TP2	
Número de etapas		Etapas:	1	
Nivel de confiabilidad		conf.	75.0 %	
Coeficiente estadústico de desviación estandar	normal	ZR	-0.674	
Desviación estandar combinado		So	0.44	
Indice de serviciabilidad Inicial según rango de	tráfico	Pi	3.8	
Indice de serviciabilidad final según rango de tra	áfico	Pt	2	
Diferencial de serviciabilidad según rango de tra	áfico	ΔPSI	1.8	

$$log_{10}(W_{18}) = Z_R S_O + 9.36 log_{10}(SN+1) - 0.2 + \frac{log_{10}(\frac{\Delta PSI}{4.2 - 1.5})}{0.4 + \frac{1094}{(SN+1)^{5.19}}} + 2.32 log_{10}(M_R) - 8.07$$

	Número estructural requerido	Calcular SN	SNR=	2.438
--	------------------------------	-------------	------	-------

Coeficientes estructurales de las capas

	A		
CAPA SUPERFICIAL	BASE	SUBBASE	
a1	a2	a3	
Carpeta Asfáltica en Caliente, módulo 2,965 MPa (430,000 PSI) a 20 °C (68 oF)	Base Granular CBR 80%, compactada al 100% de la MDS	Sub Base Granular CBR 40%, compactada al 100% de la MDS	
Capa Superficial recomendada para todos los tipos de Tráfico	Capa de Base recomendada para Tráfico ≤ 5'000,000 EE	Capa de Sub Base recomendada para Tráfico ≤ 15'000,000 EE	
0.170	0.052	0.047	

Coeficientes de drenaje para Bases y SubBases granulares no tratadas en pavimentos flexibles

m2	m3
1	1

$$SNR = a_1 * d_1 + a_2 * d_2 * m_2 + a_3 * d_3 * m_3$$

Cálculo de espesores de las capas

d1	d2	d3	
5 cm	15 cm	20 cm	
Capa superficial	Base	SubBase	

SNR (Requerido)	2.438	Debe cumplir SNR (Resultado) > SNR (Requerido)
SNR (Resultado)	2.570	SI CUMPLE

H.7. CONCLUSIÓN

Para una proyección de diseño de 10 años, la estructura del pavimento será determina de la siguiente manera:

- 0.05 m de carpeta Asfáltica.
- 0.15 m de Base (Material Granular).
- 0.20 m de Sub base (Material Granular).

2.1.3. DIMENSIONAMIENTO

El área de la zona a ejecutar el proyecto es el distrito de Aco, para el estudio se intervinieron las siguientes calles:

Tabla 39: Calles a intervenir para el Estudio de Investigación

Tramos	Medidas		Área
Trainos	Longitud	Ancho	Area
JR. AYACUCHO	215.75	3.90	841.43
CALLE CÁCERES TRAMO 01	106.10	4.80	509.28
CALLE CÁCERES TRAMO 02	50.00	5.24	262.00
	50.00	4.08	204.00
	22.40	3.28	73.47
CALLE CÁCERES TRAMO 03	65.18	3.90	254.20
CALLE SÁENZ PEÑA TRAMO 01	126.30	4.80	606.24
CALLE SÁENZ PEÑA TRAMO 02	50.00	3.55	177.50
	26.50	3.49	92.35
	1.50	4.01	6.01
, ~	53.60	4.45	238.25
CALLE SÁENZ PEÑA TRAMO 03	28.75	3.90	112.13
JR. BOLOGNESI	243.40	3.90	949.26
JR. BOLÍVAR TRAMO 01	264.00	5.40	1425.60
JR. ACO TRAMO 01	17.60	5.45	95.92
	33.10	4.40	145.64
	383.00	4.40	1685.20
JR. ACO TRAMO 02	71.95	3.90	280.61
	14.60	4.05	59.13
JR. ACO TRAMO 03	129.50	3.90	505.05
	18.00	4.50	81.00
CALLE JUNÍN TRAMO 01	98.30	4.40	432.52
CALLE JUNÍN TRAMO 02	312.40	2.70	843.48
JOSÉ DE LA MAR TRAMO 01	330.90	5.40	1786.86
JOSÉ DE LA MAR TRAMO 02	135.95	5.40	734.13
TOTAL	2,848.78		12,401.25

2.1.4. EQUIPOS UTILIZADOS

Equipos utilizados para el mejoramiento de las calles

Tabla 40: Equipos utilizados en trabajos preliminares

Equipo utilizado	Descripción Teórica
Estación Total	Una estación total es un equipo topográfico que se utiliza para medir distancias, ángulos y elevaciones en la topografía y la cartografía. También se le conoce como teodolito electrónico.

Fuente: Elaboración Propia

Tabla 41: Equipos utilizados en Movimiento de Tierras

Equipo utilizado	Descripción Teórica
Cargador Frontal	Un cargador frontal es una máquina de trabajo pesado que se utiliza para cargar y transportar materiales a granel como tierra, arena, grava, nieve, desechos y más. También se le llama cargador frontal o pala cargadora.
Retroexcavadora	Una excavadora es una máquina de construcción utilizada para excavar y cargar tierra, rocas y otros materiales. Es conocido por su gran brazo articulado en la parte trasera para excavar y baldes en la parte delantera para cargar material excavado en camiones o áreas de almacenamiento. Las excavadoras se utilizan comúnmente en proyectos de construcción, minería y agricultura para realizar operaciones de excavación y carga.
Camión Volquete	Un camión volquete, es un vehículo pesado que se utiliza para transportar materiales sueltos como tierra, arena, grava, desechos de construcción y otros materiales similares.

Tabla 42: Equipos utilizados en el Escarificado, Riego y Compactado de Sub-Rasante, Sub Base y Base

Equipo utilizado	Descripción Teórica
Motoniveladora	Las motoniveladoras, son máquinas de ingeniería que se utilizan para nivelar carreteras como autopistas, aeropuertos y obras de construcción. Por lo general, consta de una cuchilla larga que se usa para alisar superficies irregulares, eliminar la suciedad y crear una superficie plana.
Rodillo Liso Vibratorio	El rodillo liso vivratorio, es un equipo de construcció de carreteras que se utiliza para compactar y nivela suelos, asfalto y otros materiales de construcción. E tanque consta de un gran tambor cilíndrico con un superficie lisa que gira y vibra para compactar e material que se encuentra debajo.
Camión Cisterna	Un camión cisterna es un camión diseñado para transportar líquidos o gases a granel. Los camiones suelen tener un tanque o contenedor montado en el chasis para almacenar y transportar los liquidos.

Tabla 43: Equipos utilizados para la Limpieza, Imprimación y Colocación de Asfalto en Caliente

Equipo utilizado	Descripción Teórica
Compresora Neumática	Un compresor neumático o compresor de aire es un dispositivo que se utiliza para comprimir aire comprimido y almacenarlo en un tanque. El aire comprimido se utiliza en diversas aplicaciones industriales, desde alimentar herramientas neumáticas hasta suministrar aire a equipos automatizados.
Camión Imprimador	Un camión imprimador, o camión distribuidor de asfalto, es un tipo de vehículo utilizado en la construcción de carreteras para aplicar asfalto caliente o emulsiones asfálticas sobre la superficie de una carretera existente. El camión está diseñado con un tanque de asfalto y una bomba que distribuye el asfalto sobre la superficie de la carretera.
Pavimentadora	Una pavimentadora es una maquinaria pesada utilizada para aplicar asfalto u otros materiales de

pavimentación en la superficie de una carretera o cualquier otro tipo de pavimento. Las pavimentadoras pueden ser autopropulsadas o remolcadas por un camión, y están diseñadas para aplicar una capa uniforme de asfalto sobre una superficie de terreno previamente preparada.

Rodillo Tándem

Un rodillo tándem es un tipo de maquinaria pesada utilizada en la construcción y mantenimiento de carreteras y otras superficies pavimentadas. Es un rodillo de compactación que tiene dos tambores de acero, uno en la parte delantera y otro en la parte trasera, que trabajan juntos para compactar la superficie del pavimento.

Rodillo Neumático

Un rodillo neumático es una máquina de construcción utilizada para compactar superficies de suelo o asfalto en proyectos de construcción de carreteras, pavimentación y otros trabajos de construcción de infraestructura. Este utiliza neumáticos en lugar de tambores de acero para compactar el suelo o el asfalto.

Fuente: Elaboración Propia

2.1.5. CONCEPTOS BÁSICOS

Afirmado

"Capa de material selecto procesado de acuerdo a diseño, que se coloca sobre la subrasante o sub-base de un pavimento. Funciona como capa de rodadura y soporte del tráfico en vías no pavimentadas" (Ministerio de Vivienda, 2010, p.38).

Base

"Capa generalmente granular, aunque también podría ser de suelo estabilizado, de concreto asfaltico o de concreto hidráulico. Su función principal es de servir como elemento estructural de los pavimentos" (Ministerio de Vivienda, 2010, p.38).

Calle

"En su sentido más genérico es una vía publica en un área urbana entre límites de propiedad, con o sin acera, destinada al tránsito de peatones y/o vehículos" (Ministerio de Vivienda, 2010, p.38).

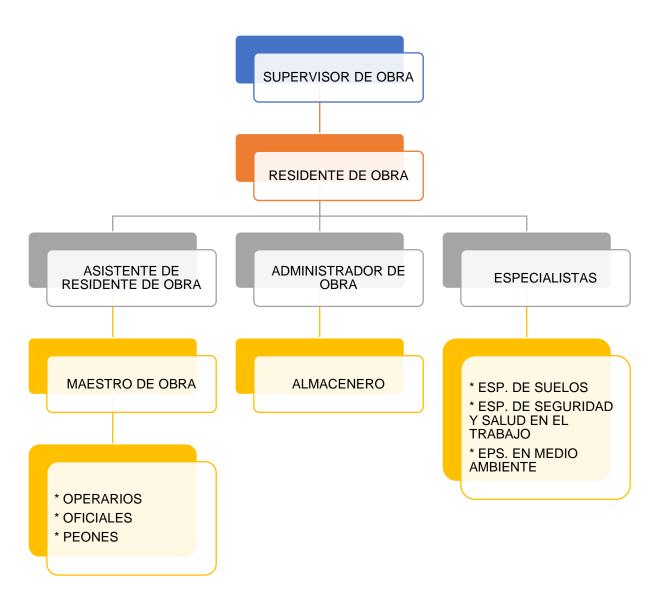
Bombeo

"Es la convexidad dada la sección transversal de una vía para facilitar el drenaje de las aguas superficiales" (Ministerio de Vivienda, 2010, p.38).

Carril

"Parte de la calzada destinada a la circulación de una fila de vehículos" (Ministerio de Vivienda, 2010, p.39).

Concreto asfáltico

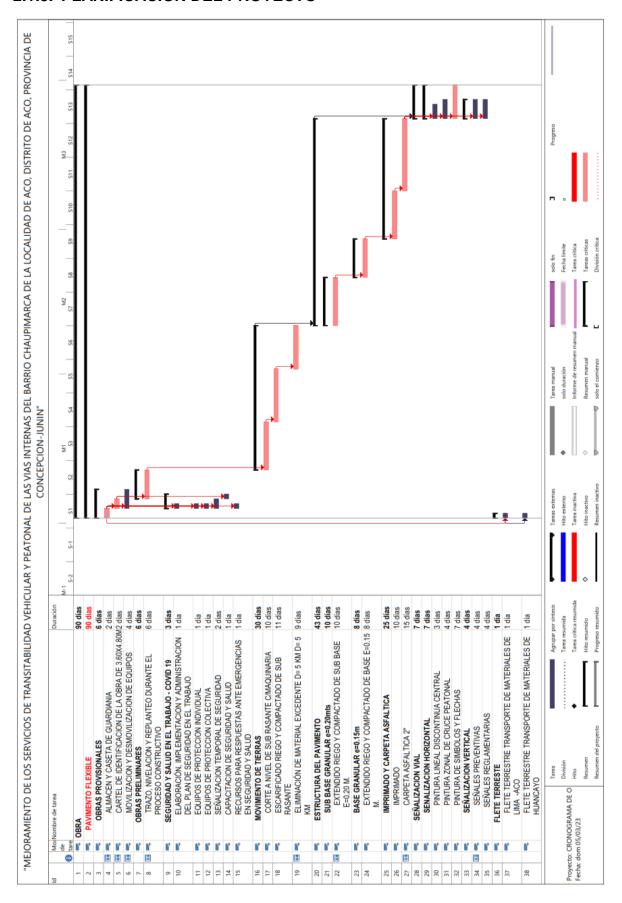

"Es una mezcla compuesta de cemento asfaltico y agregados bien graduados, de alta calidad, completamente compactada en una masa densa y uniforme" (Ministerio de Vivienda, 2010, p.40).

Estructura del pavimento asfaltico

"Pavimento con todas sus capas de mezclas asfálticas, o de una combinación de capas asfálticas y base granulares, colocadas encima de la subrasante natural o estabilizada" (Ministerio de Vivienda, 2010, p.38).

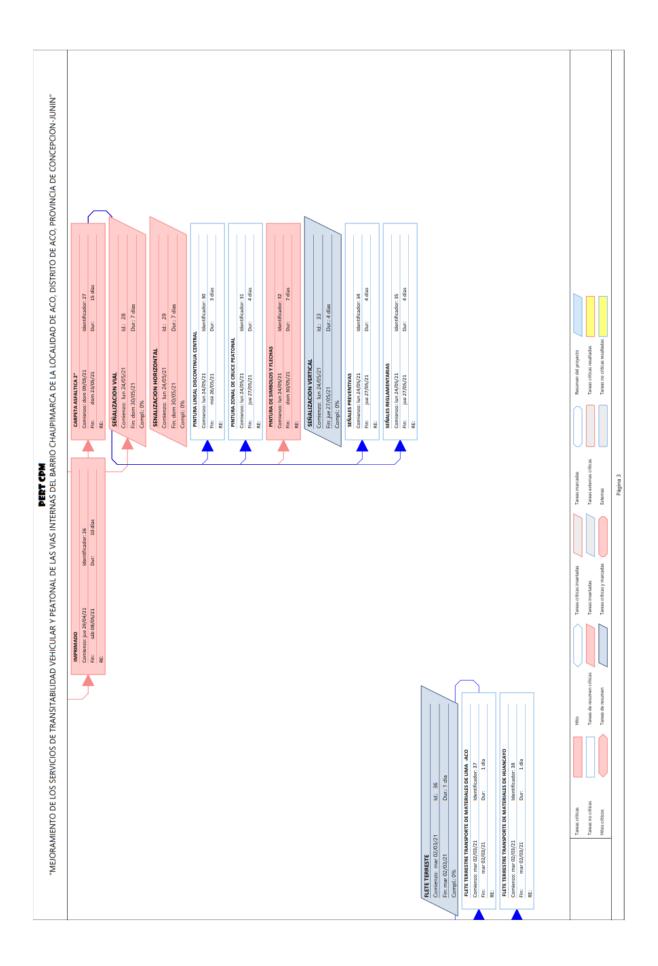
2.1.6. ESTRUCTURA

Organigrama de para la ejecución de la obra, del proyecto en estudio.


2.1.7. ELEMENTOS Y FUNCIONES

CARGO DE DESEMPEÑO COMO ASISTENTE DE RESIDENTE:


Como asistente de residente de obra, las responsabilidades pueden variar según la empresa o proyecto en el que se esté trabajando, pero en general, tus tareas podrían incluir:


- Asistir al residente de obra en la dirección y verificación de las partidas de la obra.
- Ayudar a preparar y revisar los planes de trabajo, estimaciones y presupuestos.
- Asistir en la organización y programación de los encargos de obra.
- Ayudar en la preparación de informes mensuales.
- Verificar el cumplimiento de los requisitos legales, normas de construcción y regulaciones aplicables.
- Proporcionar apoyo en la elaboración de la documentación para la recepción de las obras.
- Ayudar en la preparación de los documentos de control de calidad.
- Realizar inspecciones de la obra para verificar la calidad y dar el cumplimiento a las especificaciones técnicas.
- Comunicarse con los contratistas, proveedores y otros miembros del equipo de proyecto.
- Realizar otras tareas asignadas por el residente de obra.

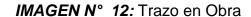
2.1.8. PLANIFICACIÓN DEL PROYECTO

*** PETORAMENTO DE LOS SENVICIOS DE TRANSTITUBIDAD VEHICULAR Y PALTONAL DE LAS VAS INTERNAS DE LA LOCALIDAD DE ACO. DISTINTO DE ACO. DISTINTO DE ACO. PROVINCIA DE CONCEPCION-LIANY *** PRESENTATION DE LA LOCALIDAD DE ACO. DISTINTO DE ACO. DISTINTO DE ACO. DISTINTO DE ACO. PROVINCIA DE CONCEPCION-LIANY *** PRESENTATION DE LA LOCALIDAD DE ACO. DISTINTO DE ACO. PROVINCIA DE CONCEPCION-LIANY *** PRESENTATION DE LA LOCALIDAD DE ACO. DISTINTO DE ACO. DISTINTO DE ACO. PROVINCIA DE CONCEPCION-LIANY *** PRESENTATION DE LA LOCALIDAD DE ACO. DISTINTO DE ACO. PROVINCIA DE CONCEPCION-LIANY *** PRESENTATION DE LA LOCALIDAD DE ACO. DISTINTO DE ACO. PROVINCIA DE CONCEPCION-LIANY *** PRESENTATION DE LA LOCALIDAD DE ACO. DISTINTO DE ACO. PROVINCIA DE CONCEPCION-LIANY *** PRESENTATION DE LA LOCALIDAD DE ACO. DISTINTO DE ACO. PROVINCIA DE CONCEPCION-LIANY *** PRESENTATION DE LA LOCALIDAD DE ACO. DISTINTO DE ACO. PROVINCIA DE CONCEPCION-LIANY *** PRESENTATION DE LA LOCALIDAD DE ACO. DISTINTO DE ACO. PROVINCIA DE CONCEPCION-LIANY *** PRESENTATION DE LA LOCALIDAD DE ACO. DISTINTO DE ACO. PROVINCIA DE CONCEPCION-LIANY *** PRESENTATION DE LA LOCALIDAD DE ACO. DISTINTO DE ACO. PROVINCIA DE CONCEPCION-LIANY *** PRESENTATION DE LA LOCALIDAD DE ACO. DISTINTO DE ACO. PROVINCIA DE CONCEPCION-LIANY *** PRESENTATION DE LA LOCALIDAD DE ACO. DISTINTO DE ACO. PROVINCIA DE CONCEPCION-LIANY *** PRESENTATION DE LA LOCALIDAD DE ACO. DISTINTO DE ACO. PROVINCIA DE CONCEPCION-LIANY *** PRESENTATION DE LA LOCALIDAD DE ACO. DISTINTO DE ACO. PROVINCIA DE LA LOCALIDAD DE ACO. DISTINTO DE ACO. PROVINCIA DE CONCEPCION-LIANY *** PRESENTATION DE LA LOCALIDAD DE ACO. DISTINTO DE A
--

2.1.9. SERVICIOS Y APLICACIONES

A continúan se muestra el proceso constructivo del proyecto en estudio:

 En la imagen 10, se puede apreciar las charlas de seguridad y al equipo de trabajo con sus respectivos EEPs. Las charlas se realizaron todos los días hasta la culminación de la obra.



2. En la imagen 11, se ve realizando los trabajos de replanteo preliminar para determinar la sección de las calles, de acuerdo a los planos del proyecto.

IMAGEN N° 11: Trabajos de Replanteo

3. En la imagen 12, se realiza los trazos respectivos para realizar los cortes en los tramos que se requiera.

4. Imagen 13, luego de realizar el replanteo y el trazo, se comienza con los trabajos de movimiento de tierra, realizando cortes de la rasante.

IMAGEN N° 13: Movimiento de tierra con Maquinaras

5. Imagen 14, luego de realizar los cortes respectivos en los tramos de las calles, se procede a retirar el material excedente, estos son transportados mediante volquetes a un botadero autorizado por las autoridades competentes del área del proyecto.

6. Imagen 15 y 16, Realizado la Limpieza de material excedente, se procede a realizar los trabajos de escarificado y compactado en la subrasante, se refiere básicamente a nivelar y compactar el terreno para recibir la primera capara del pavimento que es la sub base.

IMAGEN N° 15: Escarificado de la Subrasante

IMAGEN N° 16: Compactado de la Subrasante

7. Imagen 17, luego de realizar la compactación, se realizan los ensayos correspondientes, en te caso la prueba de Densidad del suelo, para verificar si la compactación del suelo es la óptima.

IMAGEN N° 17: Ensayo de Densidad de campo en la Subrasante

8. Imagen 18 y 19, una vez realizado el ensayo de suelo y verificado que este se encuentra dentro de los parámetros establecidos, se procede a colocar la sub base. El compactado se realizó en dos capas, la primera de 10 cm de espesor y luego la otra capa restante.

IMAGEN N° 18: Material granular preparado para la sub base

IMAGEN N° 19: Tendido de Material Granular para Sub Base

 Imagen 20 y 21, el material granular de la sub base, tiene que ser humedecido y mezclado hasta alcanzar una mezcla proporcional y que este tenga una humedad óptima, que luego será compactado con el rodillo vibrador.

IMAGEN N° 21: Compactado de la Sub Base

10. Imagen 22, terminado la compactación de la sub base, nuevamente se realiza el ensayo de Densidad, para determinar el grado de compactación de la Sub base.

IMAGEN N° 22: Ensayo de Densidad de Campo de la Sub base

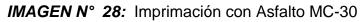
11. Imagen 23, verificando que la compactación de la sub base se encuentre dentro de los parámetros, se continua con la colocación de la base, la cual se en 02 capas la primera de 8 cm de espesor y luego los otros 7 cm restantes.

IMAGEN N° 23: Tendido de Material Granular para Base

IMAGEN N° 24: Compactación de la Base

IMAGEN N° 25: Ensayo de Densidad del Suelo de la Base

12. Imagen 26, una vez colocado la base, se procede a realizar la limpieza de la superficie de este, quitando toda suciedad que se encuentra en ello, hasta dejarlo completamente limpio.


IMAGEN N° 26: Ensayo de Densidad del Suelo de la Base

13. Imagen 27, una vez que limpiado la superficie de la base, se realiza la imprimación con el asfaltico MC-30 cubriendo toda la superficie de la Base tal como se muestra en las siguientes imágenes.

IMAGEN N° 27: Imprimación con Asfalto MC-30

14. Imagen 29, realizado la imprimación y habiendo verificado que este como mínimo penetre 5mm se realiza la colocación de la carpeta asfáltica.

IMAGEN N° 29: Colocado del Asfalto con la Pavimentadora

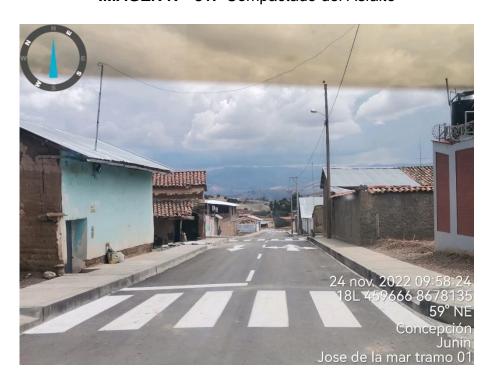


IMAGEN N° 30: Compactado del Asfalto

15. Imagen 31, ya para culminar los trabajo se realizaron el Pindado de señalizaciones de las vías, de acuerdo a los planos y especificaciones.

IMAGEN N° 31: Compactado del Asfalto

CAPITULO III: DISEÑO METODOLÓGICO

3.1. TIPO Y DISEÑO DE INVESTIGACIÓN

3.1.1. TIPO DE INVESTIGACIÓN

Descriptivo, el cual es un método de investigación enfocado en recopilar información y describir un fenómeno o situación específica. (Hernández Sampire, Fernández Collado y Baptista Lucio, 2014) describen que:

El propósito de la investigación descriptiva es describir en detalle las características y perfiles de un individuo, grupo, sociedad, proceso, objeto o cualquier otro fenómeno bajo análisis. Esto significa que están destinados únicamente a medir o recopilar información sobre los conceptos o variables a los que se refieren, ya sea de forma independiente o en combinación, es decir. no pretenden mostrar una conexión entre ellos. (p. 92)

3.1.2. DISEÑO DE INVESTIGACIÓN

Experimental, se utiliza para determinar la relación causal entre variables. En este tipo de investigación, el investigador manipula una o más variables independientes y mide el efecto de estas manipulaciones en una o más variables dependientes.

3.2. MÉTODO DE INVESTIGACIÓN

La inducción, es un método de investigación científica basado en observaciones de datos y hechos específicos para sacar conclusiones generales o teorías más amplias. Usando el método inductivo, los investigadores primero recopilan datos de observaciones empíricas detalladas y luego analizan estos datos para identificar patrones y tendencias.

3.3. POBLACIÓN Y MUESTRA

3.3.1. POBLACIÓN

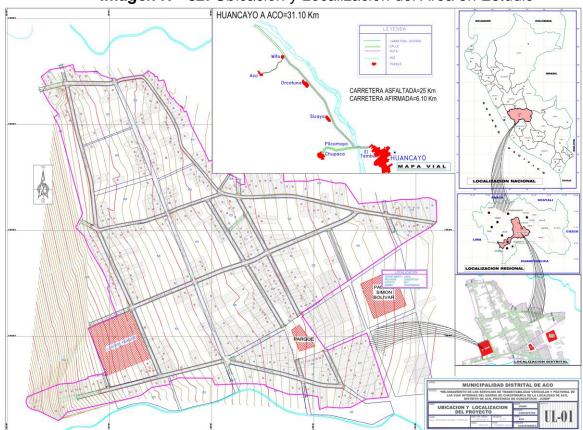
El proyecto embarca sobre la localida de Aco, Provincia de Concepción y Departamento Junín.

3.3.2. MUESTRA

La muestra para el estudio corresponde a todas las vías de la localidad de Aco, Provincia de Concepción y Departamento de Junín.

3.4. LUGAR DE ESTUDIO

3.4.1. UBICACIÓN Y LOCALIZACIÓN


El estudio se encuentra ubicado en:

REGIÓN : JUNÍN

PROVINCIA : CONCEPCIÓN

DISTRITO : ACO

Imagen N° 32: Ubicación y Localización del Área en Estudio

3.4.2. ACCESIBILIDAD

Para llegar al Distrito de Aco, iniciamos del centro de la ciudad de Huancayo, hasta el Centro Poblado de Mito, Luego se realiza un desvío hacia el distrito de Aco.

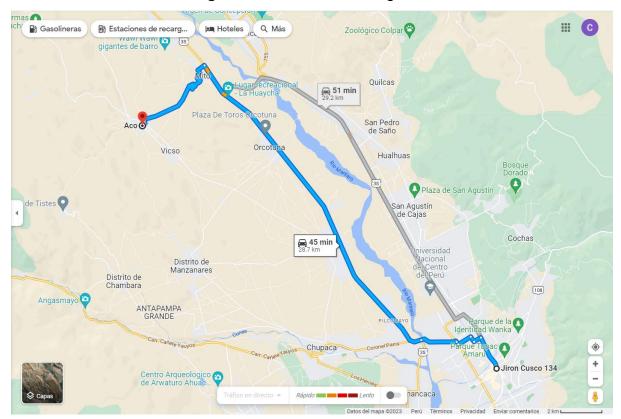


Imagen N° 33: Acceso al Lugar del Estudio

Fuente: Imagen Satelital Google Maps

Tabla 44: Acceso al Distrito de Aco

TRAMO	LONGITUD (KM)	TIEMPO (min)	TIPO DE CARRETERA
Huancayo – Mito (margen derecha)	23.1 Km.	36 minutos	Asfaltado/buen estado
Mito - Aco	6.1 Km.	15.00 minutos	Afirmado/Regular estado
TOTAL	47.52 km	80.00 min	

3.5. TÉCNICA E INSTRUMENTOS PARA LA RECOLECCIÓN DE LA INFORMACIÓN

a) Técnicas

 Observación: Una forma de prestar atención a una actividad para determinar si las acciones realizadas son correctas y cumplen con las disposiciones reglamentarias y estándar técnico.

Se realizaron visitas al área de estudio para recopilar datos de campo que luego se procesaron en la oficina de acuerdo a las necesidades del estudio de investigación.

b) Instrumentos

Para la recopilación de datos para este proyecto se utilizó el formato del inventario vial del MTC, en la cual se ha tomado nota de las características de todo el tramo de las calles del distrito de Aco, identificando los puntos críticos.

Se utilizo un formato de conteo de vehículos establecidos por el MTC, en el cual se realizó el conteo de tráfico en el punto de mayor demanda de vehículos.

Se utilizaron herramientas manuales para realizar los puntos de exploración (calicatas), para tomar las ejemplares de suelo, para ser llevados al laboratorio de geotecnia.

ANÁLISIS Y PROCESAMIENTO DE DATOS

ÍTEM	PARTIDA	CUMPLIMIENTO
1.	OBRAS PROVISIONALES	
	ALMACÉN Y CASETA DE GUARDIANÍA	SI CUMPLE
	CARTEL DE IDENTIFICACIÓN DE LA OBRA DE 3.60X4.80M	SI CUMPLE
	MOVILIZACIÓN Y DESMOVILIZACIÓN DE EQUIPOS	SI CUMPLE
2.	OBRAS PRELIMINARES	
	TRAZO, NIVELACIÓN Y REPLANTEO DURANTE EL PROCESO CONSTRUCTIVO	SI CUMPLE
3.	SEGURIDAD Y SALUD EN EL TRABAJO	
	ELABORACIÓN, IMPLEMENTACIÓN Y ADMINISTRACIÓN DEL PLAN DE SEGURIDAD EN EL TRABAJO	SI CUMPLE
	EQUIPOS DE PROTECCIÓN INDIVIDUAL	SI CUMPLE
	EQUIPOS DE PROTECCIÓN COLECTIVA	SI CUMPLE
	SEÑALIZACIÓN TEMPORAL DE SEGURIDAD	SI CUMPLE
	CAPACITACIÓN DE SEGURIDAD Y SALUD	SI CUMPLE
	RECURSOS PARA RESPUESTAS ANTE EMERGENCIAS EN SEGURIDAD Y SALUD	SI CUMPLE
4.	MOVIMIENTO DE TIERRAS	
	CORTE A NIVEL DE SUB RASANTE C/MAQUINARIA	SI CUMPLE
	ESCARIFICADO RIEGO Y COMPACTADO DE SUB RASANTE	SI CUMPLE
	ELIMINACIÓN DE MATERIAL EXCEDENTE D=4.94 KM	SI CUMPLE
5.	ESTRUCTURA DEL PAVIMENTO	
5.1.	SUB BASE GRANULAR e=0.20 m	
	EXTENDIDO RIEGO Y COMPACTADO DE SUB BASE E=0.20 M.	SI CUMPLE
5.2.	BASE GRANULAR e=0.15 m	
	EXTENDIDO RIEGO Y COMPACTADO DE BASE E=0.15 M.	SI CUMPLE
5.3.	IMPRIMADO Y CARPETA ASFÁLTICA	
	IMPRIMADO MC - 30	SI CUMPLE
	CARPETA ASFÁLTICA 2"	SI CUMPLE
6.	SEÑALIZACIÓN VIAL	
6.1	SEÑALIZACIÓN HORIZONTAL	

	PINTURA LINEAL DISCONTINUA CENTRAL	SI CUMPLE
	PINTURA ZONAL DE CRUCE PEATONAL	SI CUMPLE
	PINTURA DE SÍMBOLOS Y FLECHAS	SI CUMPLE
6.2	SEÑALIZACIÓN VERTICAL	
	SEÑALES PREVENTIVAS	SI CUMPLE
	SEÑALES REGLAMENTARIAS (R-1)	SI CUMPLE
7.	IMPACTO AMBIENTAL	
	MITIGACIÓN DEL IMPACTO AMBIENTAL	SI CUMPLE
8.	VARIOS	
	LIMPIEZA FINAL DE OBRA	SI CUMPLE
9.	FLETE TERRESTRE	
	FLETE TERRESTRE TRANSPORTE DE MATERIALES DE HUANCAYO -ACO	SI CUMPLE
	FLETE TERRESTRE TRANSPORTE DE MATERIALES DE	SI CUMPLE
	LIMA -ACO	SI CUIVIPLE

CAPITULO IV: CONCLUSIONES Y RECOMENDACIONES

4.1. CONCLUSIONES

- Se pudo identificar que las calles se encuentran a nivel de afirmado, presentado fallas de bacheo, a causa de la lluvia, y en épocas de verano la propagación de polvo lo cual es generado por el viento y por el desplazamiento de vehículos.
- De los estudios topográficos se concluye que el área del proyecto presenta un terreno fuertemente ondulado, presentando pendientes de 8 a 16%, de los estudios de suelos este presenta un tipo de suelo SC (Arenas arcillosas) y del estudio de tráfico se obtuvo un IMDs de 44 vehículos por día y un volumen de tráfico futuro se obtuvo un IMDa de 60 Vehículos por día, se utilizó el método AASHTO-93 para determinar los valores del espesor del pavimento. Obteniendo como resultado los siguientes espesores: sub base de 0.20m, base de 0.15m y una capa de asfalto de 0.05m.
- En el ítem Servicios y Aplicaciones, se describe el procedimiento constructivo del mejoramiento de las calles del proyecto en estudio, donde se indica paso a paso los trabajos a realizar, iniciando con los trabajos de replanteo, la nivelación y compactación de la subrasante, la colocación y compactación de la sub base y su respectivo prueba de densidad de campo, luego la colocación y compactación de la base, así como también los trabajos de la colocación de la carpeta asfáltica, este se hiso con la finalidad de que este material les pueda servir a los profesionales que realizaran la construcción de una obra vial.

4.2. RECOMENDACIONES

- Antes de decidir su solución hay que definir con precisión el problema, analizar por qué se produce, dónde se produce, con qué frecuencia se produce y en qué condiciones, en definitiva, cómo se comporta, para considerar una serie de soluciones inmediatas.
- Para este tipo de vías con mucho tráfico de maquinaria pesada como es el caso de tractores agrícolas, se recomienda realizar estudios de tráfico cada 5 años para dar seguimiento de sus cambios e identificar a tiempo el mantenimiento necesario a la carpeta asfaltica.
- Las empresas constructoras deben combinar equipos de inspección con equipos de producción para revisar y mejorar conjuntamente la calidad del producto. A largo plazo, la responsabilidad del control de calidad debe confiarse a quienes son responsables del desarrollo del proceso de construcción.

CAPITULO V: GLOSARIO DE TÉRMINOS, REFERENCIAS 5.1. GLOSARIO DE TÉRMINOS

AFIRMADO: capas comprimidas de material granular natural o procesado ciertas cargas de tráfico y clases de esfuerzo se admiten directamente. Debe tener la cantidad correcta de material fino y pegajoso para sostener aglomeración de partículas. Actúa como una superficie rodante en la carretera, carreteras móviles. (Glosario de Términos de infraestructura vial, 2013, p. 3)

AGREGADO: "Material granular de composición mineralógica como arena, grava, escoria, o roca triturada, usado para ser mezclado en diferentes tamaños" (Glosario de Términos de infraestructura vial, 2013, p. 3).

ASFALTO: El material gelificante, de color marrón oscuro a negro, consta de producido principalmente a partir de betunes de origen natural o como resultado de la refinación del petróleo. El contenido de betún de la mayoría de los crudos varía. (Glosario de Términos de infraestructura vial, 2013, p. 6)

ASFALTO DE IMPRIMACIÓN: "Asfalto fluido de baja viscosidad (muy líquido) que por aplicación penetra en una superficie no bituminosa" (Glosario de Términos de infraestructura vial, 2013, p. 6).

BASE: Una capa de material tratado seleccionado colocado entre la parte superior de la base o la parte inferior y la capa de uso. Esta capa también puede ser de mezcla bituminosa o procesada según proyecto. Los cimientos son parte de la estructura del pavimento. (Glosario de Términos de infraestructura vial, 2013, p. 8)

CARRETERA: "Camino para el tránsito de vehículos motorizados, de por lo menos dos ejes, con características geométricas definidas de acuerdo a las normas técnicas vigentes en el Ministerio de Transportes y Comunicaciones" (Glosario de Términos de infraestructura vial, 2013, p. 11).

CBR (California Bearing Ratio): "Valor relativo de soporte de un suelo o material, que se mide por la penetración de una fuerza dentro de una masa de suelo" (Glosario de Términos de infraestructura vial, 2013, p. 11).

COMPACTACIÓN: "Proceso manual o mecánico que tiende a reducir el volumen total de vacíos de suelos, mezclas bituminosas, morteros y concretos frescos de cemento Pórtland" (Glosario de Términos de infraestructura vial, 2013, p. 11).

CONCRETO ASFÁLTICO: "Mezcla procesada, compuesta por agregados gruesos y finos, material bituminoso y de ser el caso aditivo de acuerdo a diseño y especificaciones técnicas. Es utilizada como capa de base o de rodadura y forma parte de la estructura del pavimento" (Glosario de Términos de infraestructura vial, 2013, p. 13).

ENSAYO MARSHALL: "Procedimiento para obtener el contenido de asfalto y diferentes parámetros de calidad de una mezcla bituminosa" (Glosario de Términos de infraestructura vial, 2013, p. 21).

GRADOS DE PENETRACIÓN: "Sistema de Clasificación de los cementos asfálticos basado en la penetración a una temperatura de 25°C. Existen grados patrones de clasificación tales como: 40-50, 60-70, 85-100, 120-150 y 200-300" (Glosario de Términos de infraestructura vial, 2013, p. 25).

5.2. REFERENCIA

- Acevedo Zarate, L. K. (2021). Método Aashto y Método Shell en el Diseño de Espesores para Pavimentos Flexibles, Huancayo Junín. [Tesis Pregrado. Universidad Peruana Los Andes]. Obtenido de Repositorio Institucional de la Universidad Peruana Los Andes https://hdl.handle.net/20.500.12848/3419
- Bayas Altamirano, M. M., & Gavilanes Ilbay, A. D. (2023). Mejoramiento de la vía de acceso entre las comunidades de Chilcapamba y Santa Marianita del cantón Mocha de la provincia de Tungurahua. [Tesis Pregrado. Universidad Tecnica de Ambato]. Obtenido de Repositorio Institucional de la Universidad Tecnica de Ambato https://repositorio.uta.edu.ec/jspui/handle/123456789/37364
- Especificaciones Tecnicas Generales Para Construccion de Carreteras EG-200. (2000). *Manual de Carreteras.* Ministerio de Transporte y Comunicaciones .
- Glosario de Terminos de Uso Frecuente en Proyectos de Infraestructura Vial. (2013). Ministerio de Transporte y Comunicaciones .
- Hernández Sampiere, R., Fernández Collado, C., & Baptista Lucio, P. (2014). *Metodologia de la Investigación. 6ta Edicion.* Mexico: Mc Graw Hill Education.
- Julca Pastor, M. J. (2021). Mejoramiento de pavimento flexible en la avenida Jose Maria Eugen, Trujillo. [Tesis Pregrado. Universidad Cesar Vallejo].
- Norma CE.010 Pavimentos Urbanos. (2010). *Reglamento Nacional de Edificaciones.*Ministerio de Vivienda Construccion y Saneamiento.
- Pari Jimenez, S. D., & Chipana Jimenez, L. M. (2021). Diseño de pavimento flexible por método AASHTO 93 para mejorar la transitabilidad vial en el camino vecinal, tramo Río Seco límite Calana, distrito de Pocollay, Tacna 2019. [Tesis Pregrado. Universidad Privada de Tacna]. Obtenido de https://repositorio.upt.edu.pe/handle/20.500.12969/2093
- Quispe Cabello, L. A. (2021). Diseño vial con los métodos AASHTO-93 y SHELL para mejorar la transitabilidad en el Distrito del Tambo - Huancayo, 2020. [Tesis Pregrado. Universidad Cesar Vallejo]. Obtenido de Repositorio Digital

Intitucional de la Universidad Cesar Vallejo https://hdl.handle.net/20.500.12692/59836

Villate Hernández, É. A. (2020). Diseño de la estructura de pavimento flexible para la via ubicada en la carretera 111 entre calle 135 y 135b, de la localidad de Subasa de la ciudad de Bogota, utilizando una capa granular con material rcd. [Tesis de Maestria. Universidad Militar de Nueva Granada]. Obtenido de http://hdl.handle.net/10654/36306

CAPITULO VI: ÍNDICES

6.1. ÍNDICES DE TABLAS

Tabla 1: Requerimiento Granulométricos para la Sub Base Granular	7
Tabla 2: Requerimientos de Calidad para la Sub Base Granular	7
Tabla 3: Requerimiento Granulométricos para Base Granular	8
Tabla 4: Valor Relativo de Soporte, CBR	8
Tabla 5: Requerimientos del Agregado Grueso de Base Granular	8
Tabla 6: Requerimientos del Agregado Fino de Base Granular	9
Tabla 7: Requerimientos para los Agregados Gruesos de Mezclas Asfál	lticas
en Caliente	9
Tabla 8: Requerimientos para los Agregados Finos de Mezclas Asfáltica	as en
Caliente	10
Tabla 9: Requerimientos para Caras Fracturadas	10
Tabla 10: Requerimientos del Equivalente de Arena	10
Tabla 11: Angularidad del Agregado Fino	11
Tabla 12: Gradaciones de los Agregados para Mezclas Asfálticas en Cal	iente
	11
Tabla 13: Ubicación y profundidad de calicatas	15
Tabla 14: Ensayo a realizar a las muestras obtenidas de las calicatas	16
Tabla 15: Corrección de la Poligonal por Planimetría	23
Tabla 16: Correcciones por cuadrantes Acumuladas	23
Tabla 17: Corrección de la Poligonal por Altimetría	24
Tabla 18: Resultado de la Clasificación de Suelos	26
Tabla 19: Resultados Proctor Modificado	28
Tabla 20: Resultado del Conteo de Tráfico Vehicular	38
Tabla 21: Factor de corrección para vehículos	38
Tabla 22: Corrección de Vehículos	39
Tabla 23: Tasa de Crecimiento Vehicular	40
Tabla 24: Volumen de Transito Proyectado	40
Tabla 25: Calculo de Esal por Vehículo	41
Tabla 26: Calculo de Esal	42
Tabla 27: Evaluación de los Impactos Ambientales	44
Tabla 28: Grado de Sensibilidad de un Impacto	45

Tabla 29: Clasificación Ambiental en de Valores en Base a la Significancia
Ambiental del Impacto (SI)45
Tabla 30: Resultados del Estudio de Riesgo
Tabla 31: Módulo de Resilencia57
Tabla 32: Periodos de Diseño en Función del Tipo de Carretera57
Tabla 33: Índice de Serviciabilidad Inicial (Pi) Según Rango de Trafico 58
Tabla 34: Índice de Serviciabilidad Final (Pt) Según Rango de Trafico 59
Tabla 35: Índice de Serviciabilidad Final (Pt) Según Rango de Trafico 59
Tabla 36: ESAL de Diseño60
Tabla 37: Proctor Modificado Diseño60
Tabla 38: Valores Recomendados de Coeficiente de Drenaje61
Tabla 39: Calles a intervenir para el Estudio de Investigación63
Tabla 40: Equipos utilizados en trabajos preliminares64
Tabla 41: Equipos utilizados en Movimiento de Tierras64
Tabla 42: Equipos utilizados en el Escarificado, Riego y Compactado de
Sub-Rasante, Sub Base y Base65
Tabla 43: Equipos utilizados para la Limpieza, Imprimación y Colocación de
Asfalto en Caliente65
Tabla 44: Acceso al Distrito de Aco
Tabla 45: Presupuesto del Provecto de Investigación

6.2. ÍNDICE DE IMÁGENES

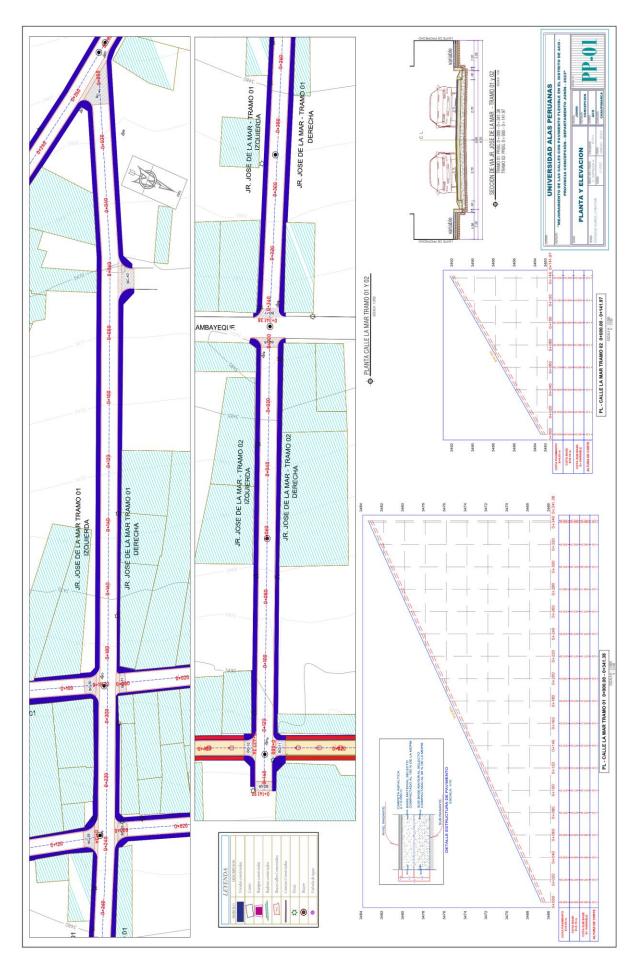
IMAGEN N° 1: Ubicación de la Poligonal en el área de estudio	22
Imagen N° 2: Levantamiento Topográfico	25
Imagen N° 3: Extracción de Muestras	28
Imagen N° 4: Resultado de los Ensayos de Laboratorio	29
Imagen N° 5: Señal Pare (R-1)	49
Imagen N° 6: Ejemplo de demarcación en el piso	50
Imagen N° 7: Flechas Rectas	50
Imagen N° 8: Flechas de Giro	51
Imagen N° 9: Flechas Recta y de Giro	51
IMAGEN N° 10: Charlas diaria con el personal obrero	74
IMAGEN N° 11: Trabajos de Replanteo	74
IMAGEN N° 12: Trazo en Obra	75
IMAGEN N° 13: Movimiento de tierra con Maquinaras	75
IMAGEN N° 14: Eliminación de Material Excedente	76
IMAGEN N° 15: Escarificado de la Subrasante	76
IMAGEN N° 16: Compactado de la Subrasante	77
IMAGEN N° 17: Ensayo de Densidad de campo en la Subrasante	77
IMAGEN N° 18: Material granular preparado para la sub base	78
IMAGEN N° 19: Tendido de Material Granular para Sub Base	78
IMAGEN N° 20: Riego del Material Granular	
IMAGEN N° 21: Compactado de la Sub Base	79
IMAGEN N° 22: Ensayo de Densidad de Campo de la Sub base	80
IMAGEN N° 23: Tendido de Material Granular para Base	80
IMAGEN N° 24: Compactación de la Base	81
IMAGEN N° 25: Ensayo de Densidad del Suelo de la Base	81
IMAGEN N° 26: Ensayo de Densidad del Suelo de la Base	
IMAGEN N° 27: Imprimación con Asfalto MC-30	
IMAGEN N° 28: Imprimación con Asfalto MC-30	83
IMAGEN N° 29: Colocado del Asfalto con la Pavimentadora	
IMAGEN N° 30: Compactado del Asfalto	
IMAGEN N° 31: Compactado del Asfalto	
Imagen N° 32: Ubicación y Localización del Área en Estudio	86
Imagen N° 33: Acceso al Lugar del Estudio	87

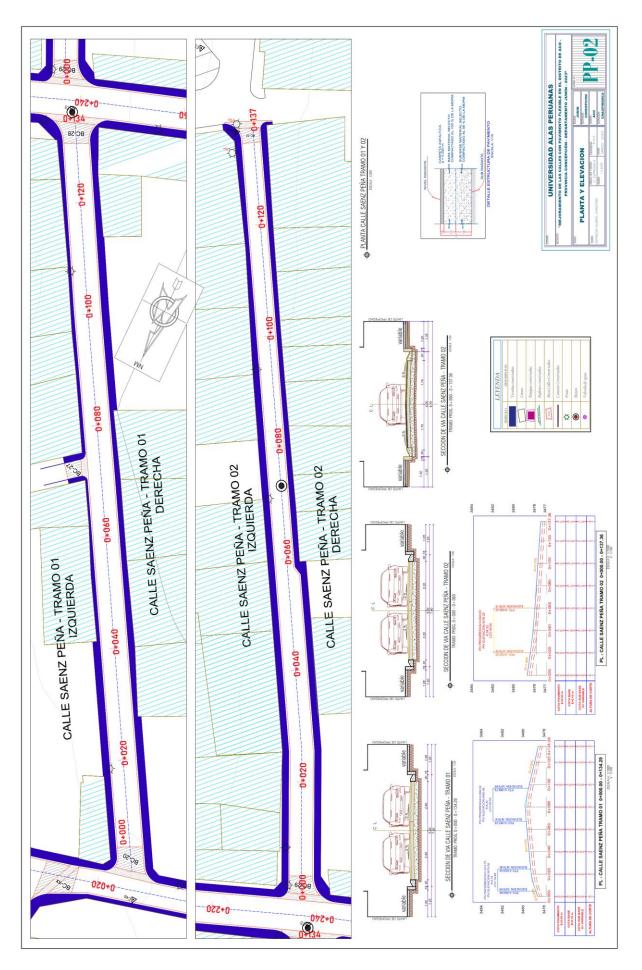
CAPITULO VII: ANEXOS

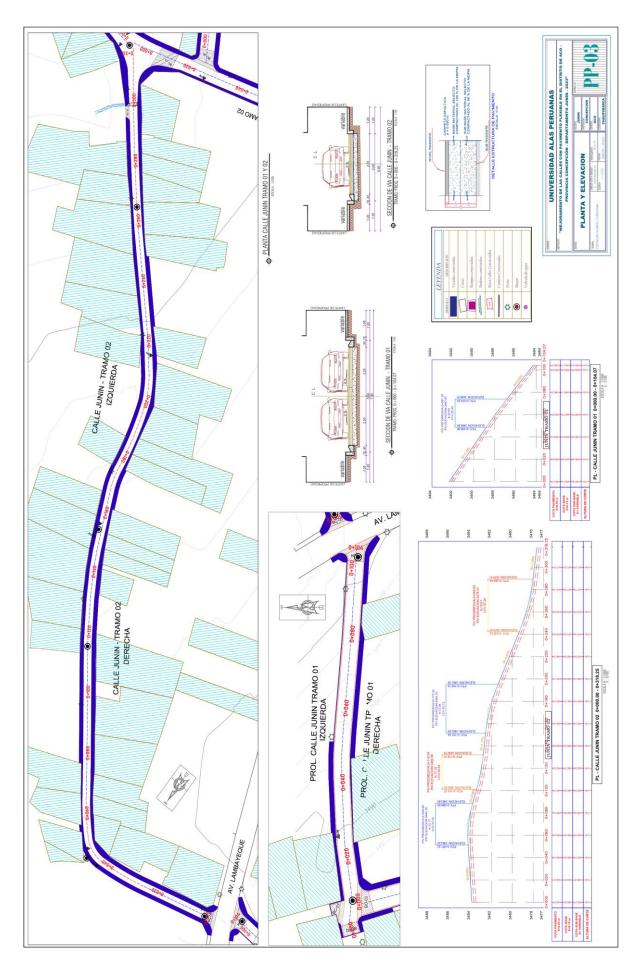
7.1. ANEXO 1: COSTO DEL PROYECTO

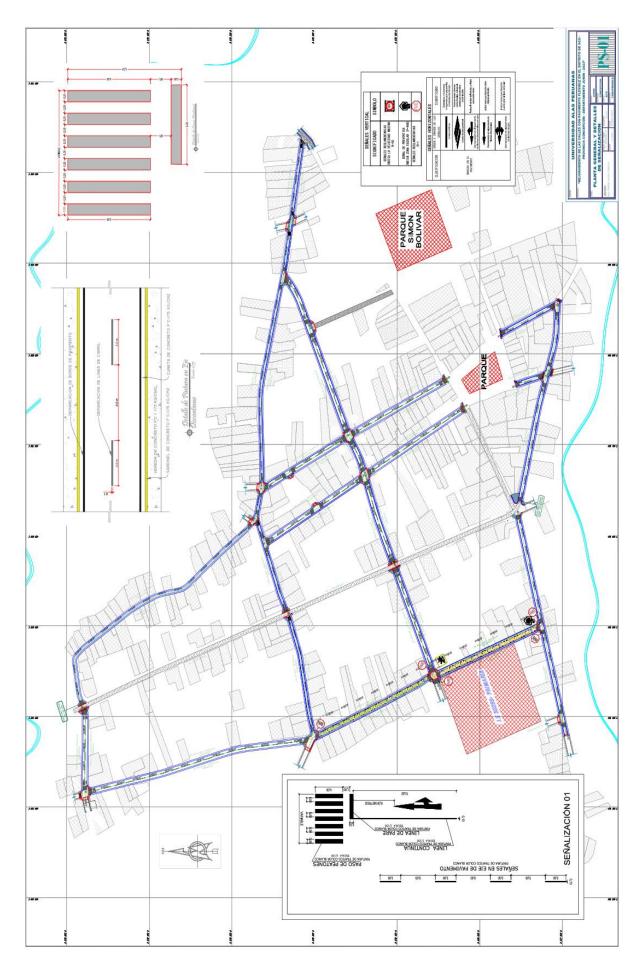
Costo Total de la Investigación de la investigación se describe en la siguiente tabla:

Tabla 45: Presupuesto del Proyecto de Investigación


Ítem	Descripción	Und	Metrado	Precio (S/.)	Parcial (S/.)
1	OBRAS PROVISIONALES				35,065.67
1.1	ALMACÉN Y CASETA DE GUARDIANÍA	mes	6.00	1,500.00	9,000.00
1.2	CARTEL DE IDENTIFICACIÓN DE LA OBRA DE 3.60X4.80 M.	und	1.00	963.85	963.85
1.3	MOVILIZACIÓN Y DESMOVILIZACIÓN DE EQUIPO	glb	1.00	25,101.82	25,101.82
2	OBRAS PRELIMINARES TRAZO, NIVELACIÓN y				73,343.34
2.1	REPLANTEO DURANTE EL PROCESO CONSTRUCTIVO	m2	26,194.05	2.80	73,343.34
3	SEGURIDAD Y SALUD EN EL TRABAJO ELABORACIÓN,				96,378.55
3.1	IMPLEMENTACIÓN Y ADMINISTRACIÓN DEL PLAN DE SEGURIDAD EN EL TRABAJO	glb	1.00	6,300.00	6,300.00
3.2	EQUIPOS DE PROTECCIÓN INDIVIDUAL	glb	50.00	1,376.58	68,829.00
3.3	EQUIPOS DE PROTECCIÓN COLECTIVA	glb	1.00	7,344.70	7,344.70
3.4	SEÑALIZACIÓN TEMPORAL DE SEGURIDAD _,	glb	1.00	7,323.03	7,323.03
3.5	CAPACITACIÓN DE SEGURIDAD Y SALUD	glb	1.00	3,900.00	3,900.00
3.6	RECURSOS PARA RESPUESTAS ANTE EMERGENCIAS EN SEGURIDAD Y SALUD	glb	1.00	2,681.82	2,681.82
4	MOVIMIENTO DE TIERRAS				305,678.00
4.1	CORTE A NIVEL DE SUB RASANTE C/MAQUINARIA	m3	10,179.93	10.62	108,110.86
4.2	ESCARIFICADO RIEGO Y COMPACTADO DE SUB RASANTE	m2	12,401.25	2.83	35,095.54
4.3	ELIMINACIÓN DE MATERIAL EXISTENTE D=5 KM	m3	12,215.91	13.30	162,471.60
5 5.1	ESTRUCTURA DEL PAVIMENTO SUB BASE GRANULAR e=0.20 m				1,299,984.79 180,810.23


5.1.1	EXTENDIDO RIEGO Y COMPACTADO DE SUB BASE E=0.20 M	m2	12,401.25	14.58	180,810.23
5.2 5.2.1	BASE GRANULAR e=0.15 m EXTENDIDO RIEGO Y COMPACTADO DE BASE E=0.15 M.	m2	12,401.25	11.78	146,086.73 146,086.73
5.3	IMPRIMADO Y CARPETA ASFÁLTICA				798,392.48
5.3.1 5.3.2	IMPRIMADO MC-30 CARPETA ASFÁLTICA 2"	m2 m2	12,401.25 12,401.25	3.60 60.78	44,644.50 753,747.98
6 6.1	SEÑALIZACIÓN VIAL SEÑALIZACIÓN HORIZONTAL				33,982.55 31,678.10
6.1.1	PINTURA LINEAL DISCONTINUA CENTRAL	m	2,674.10	9.41	25,163.28
6.1.2	PINTURA ZONAL DE CRUCE PEATONAL	m2	502.00	9.41	4,723.82
6.1.3	PINTURA DE SÍMBOLOS Y FLECHAS	m2	156.83	11.42	1,791.00
6.2 6.2.1 6.2.2	SEÑALIZACIÓN VERTICAL SEÑALES PREVENTIVAS (P-49) SEÑALES REGLAMENTARIAS (R-1)	und und	2.00 5.00	285.60 346.65	2,304.45 571.20 1,733.25
7	IMPACTO AMBIENTAL				10,000.00
7.1	MITIGACIÓN DEL IMPACTO AMBIENTAL	und	1.00	10,000.00	10,000.00
8	VARIOS	0	00 404 05	0.05	15,607.00
8.1	LIMPIEZA FINAL DE OBRA	m2	26,194.05	0.35	9,167.92
9	FLETE TERRESTRE FLETE TERRESTRE TRANSPORTE				53,033.42
9.1	DE MATERIALES DE HUANCAYO - ACO	glb	1.00	51,427.07	51,427.07
9.2	FLETE TERRESTRE TRANSPORTE DE MATERIALES DE LIMA- ACO	glb	1.00	1,606.35	1,606.35
	1,923,073.32 192,307.33 153,845.87				
	2,269,226.52 408,460.77				
	2,677,687.29				


7.2. ANEXO 2: PLANOS


Se presentan los planos del estudio de investigación:

